dxx-rebirth/similar/3d/interp.cpp

777 lines
20 KiB
C++

/*
* This file is part of the DXX-Rebirth project <http://www.dxx-rebirth.com/>.
* It is copyright by its individual contributors, as recorded in the
* project's Git history. See COPYING.txt at the top level for license
* terms and a link to the Git history.
*/
/*
*
* Polygon object interpreter
*
*/
#include <stdexcept>
#include <stdlib.h>
#include "dxxsconf.h"
#include "dsx-ns.h"
#include "dxxerror.h"
#include "interp.h"
#include "common/3d/globvars.h"
#include "polyobj.h"
#include "gr.h"
#include "byteutil.h"
#include "u_mem.h"
namespace dcx {
static const unsigned OP_EOF = 0; //eof
static const unsigned OP_DEFPOINTS = 1; //defpoints
static const unsigned OP_FLATPOLY = 2; //flat-shaded polygon
static const unsigned OP_TMAPPOLY = 3; //texture-mapped polygon
static const unsigned OP_SORTNORM = 4; //sort by normal
static const unsigned OP_RODBM = 5; //rod bitmap
static const unsigned OP_SUBCALL = 6; //call a subobject
static const unsigned OP_DEFP_START = 7; //defpoints with start
static const unsigned OP_GLOW = 8; //glow value for next poly
#ifdef EDITOR
int g3d_interp_outline;
#endif
}
namespace dsx {
static int16_t init_model_sub(uint8_t *p, int16_t);
#if defined(DXX_BUILD_DESCENT_I) || defined(WORDS_BIGENDIAN)
static inline int16_t *wp(uint8_t *p)
{
return reinterpret_cast<int16_t *>(p);
}
#endif
static inline const int16_t *wp(const uint8_t *p)
{
return reinterpret_cast<const int16_t *>(p);
}
static inline const vms_vector *vp(const uint8_t *p)
{
return reinterpret_cast<const vms_vector *>(p);
}
static inline int16_t w(const uint8_t *p)
{
return *wp(p);
}
static void rotate_point_list(g3s_point *dest, const vms_vector *src, uint_fast32_t n)
{
while (n--)
g3_rotate_point(*dest++,*src++);
}
static const vms_angvec zero_angles = {0,0,0};
namespace {
class interpreter_ignore_op_defpoints
{
public:
static void op_defpoints(const uint8_t *, uint16_t)
{
}
};
class interpreter_ignore_op_defp_start
{
public:
static void op_defp_start(const uint8_t *, uint16_t)
{
}
};
class interpreter_ignore_op_flatpoly
{
public:
static void op_flatpoly(const uint8_t *, uint16_t)
{
}
};
class interpreter_ignore_op_tmappoly
{
public:
static void op_tmappoly(const uint8_t *, uint16_t)
{
}
};
class interpreter_ignore_op_rodbm
{
public:
static void op_rodbm(const uint8_t *)
{
}
};
class interpreter_ignore_op_glow
{
public:
static void op_glow(const uint8_t *)
{
}
};
class interpreter_base
{
public:
static uint16_t get_raw_opcode(const uint8_t *const p)
{
return w(p);
}
static uint_fast32_t translate_opcode(const uint8_t *, const uint16_t op)
{
return op;
}
static uint16_t get_op_subcount(const uint8_t *const p)
{
return w(p + 2);
}
__attribute_cold
static void op_default()
{
throw std::runtime_error("invalid polygon model");
}
};
class g3_poly_get_color_state :
public interpreter_ignore_op_defpoints,
public interpreter_ignore_op_defp_start,
public interpreter_ignore_op_tmappoly,
public interpreter_ignore_op_rodbm,
public interpreter_ignore_op_glow,
public interpreter_base
{
public:
int color;
g3_poly_get_color_state() :
color(0)
{
}
void op_flatpoly(const uint8_t *const p, const uint_fast32_t nv)
{
(void)nv; // only used for Assert
Assert( nv < MAX_POINTS_PER_POLY );
if (g3_check_normal_facing(*vp(p+4),*vp(p+16)) > 0) {
#if defined(DXX_BUILD_DESCENT_I)
color = (w(p+28));
#elif defined(DXX_BUILD_DESCENT_II)
color = gr_find_closest_color_15bpp(w(p + 28));
#endif
}
}
void op_sortnorm(const uint8_t *const p)
{
const bool facing = g3_check_normal_facing(*vp(p+16),*vp(p+4)) > 0;
color = g3_poly_get_color(facing ? p + w(p + 28) : p + w(p + 30));
}
void op_subcall(const uint8_t *const p)
{
#if defined(DXX_BUILD_DESCENT_I)
color = g3_poly_get_color(p+w(p+16));
#elif defined(DXX_BUILD_DESCENT_II)
(void)p;
#endif
}
};
class g3_interpreter_draw_base
{
protected:
grs_bitmap **const model_bitmaps;
polygon_model_points &Interp_point_list;
const submodel_angles anim_angles;
const g3s_lrgb model_light;
private:
void rotate(uint_fast32_t i, const vms_vector *const src, const uint_fast32_t n)
{
rotate_point_list(&Interp_point_list[i], src, n);
}
void set_color_by_model_light(fix g3s_lrgb::*const c, g3s_lrgb &o, const fix negdot) const
{
const auto color = (f1_0 / 4) + ((negdot * 3) / 4);
o.*c = fixmul(color, model_light.*c);
}
protected:
g3s_lrgb get_noglow_light(const uint8_t *const p) const
{
g3s_lrgb light;
const auto negdot = -vm_vec_dot(View_matrix.fvec, *vp(p + 16));
set_color_by_model_light(&g3s_lrgb::r, light, negdot);
set_color_by_model_light(&g3s_lrgb::g, light, negdot);
set_color_by_model_light(&g3s_lrgb::b, light, negdot);
return light;
}
g3_interpreter_draw_base(grs_bitmap **mbitmaps, const submodel_angles aangles, polygon_model_points &plist, const g3s_lrgb &mlight) :
model_bitmaps(mbitmaps), Interp_point_list(plist),
anim_angles(aangles), model_light(mlight)
{
}
void op_defpoints(const vms_vector *const src, const uint_fast32_t n)
{
rotate(0, src, n);
}
void op_defp_start(const uint8_t *const p, const vms_vector *const src, const uint_fast32_t n)
{
rotate(static_cast<int>(w(p + 4)), src, n);
}
static std::pair<uint16_t, uint16_t> get_sortnorm_offsets(const uint8_t *const p)
{
const uint16_t a = w(p + 30), b = w(p + 28);
return (g3_check_normal_facing(*vp(p + 16), *vp(p + 4)) > 0)
? std::make_pair(a, b) //draw back then front
: std::make_pair(b, a) //not facing. draw front then back
;
}
void op_rodbm(const uint8_t *const p)
{
const auto &&rod_bot_p = g3_rotate_point(*vp(p + 20));
const auto &&rod_top_p = g3_rotate_point(*vp(p + 4));
const g3s_lrgb rodbm_light{
f1_0, f1_0, f1_0
};
g3_draw_rod_tmap(*model_bitmaps[w(p + 2)], rod_bot_p, w(p + 16), rod_top_p, w(p + 32), rodbm_light);
}
void op_subcall(const uint8_t *const p, const glow_values_t *const glow_values)
{
g3_start_instance_angles(*vp(p+4), anim_angles ? &anim_angles[w(p+2)] : &zero_angles);
g3_draw_polygon_model(p+w(p+16), model_bitmaps, anim_angles, model_light, glow_values, Interp_point_list);
g3_done_instance();
}
};
class g3_draw_polygon_model_state :
public interpreter_base,
g3_interpreter_draw_base
{
const glow_values_t *const glow_values;
unsigned glow_num;
public:
g3_draw_polygon_model_state(grs_bitmap **mbitmaps, const submodel_angles aangles, const g3s_lrgb &mlight, const glow_values_t *glvalues, polygon_model_points &plist) :
g3_interpreter_draw_base(mbitmaps, aangles, plist, mlight),
glow_values(glvalues),
glow_num(~0u) //glow off by default
{
}
void op_defpoints(const uint8_t *const p, const uint_fast32_t n)
{
g3_interpreter_draw_base::op_defpoints(vp(p + 4), n);
}
void op_defp_start(const uint8_t *const p, const uint_fast32_t n)
{
g3_interpreter_draw_base::op_defp_start(p, vp(p + 8), n);
}
void op_flatpoly(const uint8_t *const p, const uint_fast32_t nv)
{
Assert( nv < MAX_POINTS_PER_POLY );
if (g3_check_normal_facing(*vp(p+4),*vp(p+16)) > 0)
{
array<cg3s_point *, MAX_POINTS_PER_POLY> point_list;
for (uint_fast32_t i = 0;i < nv;i++)
point_list[i] = &Interp_point_list[wp(p+30)[i]];
#if defined(DXX_BUILD_DESCENT_II)
if (!glow_values || !(glow_num < glow_values->size()) || (*glow_values)[glow_num] != -3)
#endif
{
// DPH: Now we treat this color as 15bpp
#if defined(DXX_BUILD_DESCENT_I)
const uint8_t color = w(p + 28);
#elif defined(DXX_BUILD_DESCENT_II)
const uint8_t color = (glow_values && glow_num < glow_values->size() && (*glow_values)[glow_num] == -2)
? 255
: gr_find_closest_color_15bpp(w(p + 28));
#endif
g3_draw_poly(nv,point_list, color);
}
}
}
static g3s_lrgb get_glow_light(const fix c)
{
return {c, c, c};
}
void op_tmappoly(const uint8_t *const p, const uint_fast32_t nv)
{
Assert( nv < MAX_POINTS_PER_POLY );
if (!(g3_check_normal_facing(*vp(p+4),*vp(p+16)) > 0))
return;
//calculate light from surface normal
const auto &&light = (glow_values && glow_num < glow_values->size())
? get_glow_light((*glow_values)[exchange(glow_num, -1)]) //yes glow
: get_noglow_light(p); //no glow
//now poke light into l values
array<g3s_uvl, MAX_POINTS_PER_POLY> uvl_list;
array<g3s_lrgb, MAX_POINTS_PER_POLY> lrgb_list;
const fix average_light = (light.r + light.g + light.b) / 3;
for (uint_fast32_t i = 0; i != nv; i++)
{
lrgb_list[i] = light;
uvl_list[i] = (reinterpret_cast<const g3s_uvl *>(p+30+((nv&~1)+1)*2))[i];
uvl_list[i].l = average_light;
}
array<cg3s_point *, MAX_POINTS_PER_POLY> point_list;
for (uint_fast32_t i = 0; i != nv; i++)
point_list[i] = &Interp_point_list[wp(p+30)[i]];
g3_draw_tmap(nv,point_list,uvl_list,lrgb_list,*model_bitmaps[w(p+28)]);
}
void op_sortnorm(const uint8_t *const p)
{
const auto &&offsets = get_sortnorm_offsets(p);
auto &a = offsets.first;
auto &b = offsets.second;
g3_draw_polygon_model(p + a,model_bitmaps,anim_angles,model_light,glow_values, Interp_point_list);
g3_draw_polygon_model(p + b,model_bitmaps,anim_angles,model_light,glow_values, Interp_point_list);
}
using g3_interpreter_draw_base::op_rodbm;
void op_subcall(const uint8_t *const p)
{
g3_interpreter_draw_base::op_subcall(p, glow_values);
}
void op_glow(const uint8_t *const p)
{
glow_num = w(p+2);
}
};
class g3_draw_morphing_model_state :
public interpreter_ignore_op_glow,
public interpreter_base,
g3_interpreter_draw_base
{
const vms_vector *const new_points;
static constexpr const glow_values_t *glow_values = nullptr;
public:
g3_draw_morphing_model_state(grs_bitmap **mbitmaps, const submodel_angles aangles, g3s_lrgb mlight, const vms_vector *npoints, polygon_model_points &plist) :
g3_interpreter_draw_base(mbitmaps, aangles, plist, mlight),
new_points(npoints)
{
}
void op_defpoints(const uint8_t *, const uint_fast32_t n)
{
g3_interpreter_draw_base::op_defpoints(new_points, n);
}
void op_defp_start(const uint8_t *const p, const uint_fast32_t n)
{
g3_interpreter_draw_base::op_defp_start(p, new_points, n);
}
void op_flatpoly(const uint8_t *const p, const uint_fast32_t nv)
{
int i,ntris;
#if defined(DXX_BUILD_DESCENT_I)
const uint8_t color = 55/*w(p+28)*/;
#elif defined(DXX_BUILD_DESCENT_II)
const uint8_t color = w(p+28);
#endif
array<cg3s_point *, 3> point_list;
for (i=0;i<2;i++)
point_list[i] = &Interp_point_list[wp(p+30)[i]];
for (ntris=nv-2;ntris;ntris--) {
point_list[2] = &Interp_point_list[wp(p+30)[i++]];
g3_check_and_draw_poly(point_list, color);
point_list[1] = point_list[2];
}
}
void op_tmappoly(const uint8_t *const p, const uint_fast32_t nv)
{
int ntris;
//calculate light from surface normal
//now poke light into l values
array<g3s_uvl, 3> uvl_list;
array<g3s_lrgb, 3> lrgb_list;
lrgb_list.fill(get_noglow_light(p));
for (unsigned i = 0; i < 3; ++i)
uvl_list[i] = (reinterpret_cast<const g3s_uvl *>(p+30+((nv&~1)+1)*2))[i];
array<cg3s_point *, 3> point_list;
unsigned i;
for (i = 0; i < 2; ++i)
{
point_list[i] = &Interp_point_list[wp(p+30)[i]];
}
for (ntris=nv-2;ntris;ntris--) {
point_list[2] = &Interp_point_list[wp(p+30)[i]];
i++;
g3_check_and_draw_tmap(point_list,uvl_list,lrgb_list,*model_bitmaps[w(p+28)]);
point_list[1] = point_list[2];
}
}
void op_sortnorm(const uint8_t *const p)
{
const auto &&offsets = get_sortnorm_offsets(p);
auto &a = offsets.first;
auto &b = offsets.second;
g3_draw_morphing_model(p + a,model_bitmaps,anim_angles,model_light,new_points, Interp_point_list);
g3_draw_morphing_model(p + b,model_bitmaps,anim_angles,model_light,new_points, Interp_point_list);
}
using g3_interpreter_draw_base::op_rodbm;
void op_subcall(const uint8_t *const p)
{
g3_interpreter_draw_base::op_subcall(p, glow_values);
}
};
class init_model_sub_state :
public interpreter_ignore_op_defpoints,
public interpreter_ignore_op_defp_start,
public interpreter_ignore_op_rodbm,
public interpreter_ignore_op_glow,
public interpreter_base
{
public:
int16_t highest_texture_num;
init_model_sub_state(int16_t h) :
highest_texture_num(h)
{
}
void op_flatpoly(uint8_t *const p, const uint_fast32_t nv)
{
(void)nv;
Assert(nv > 2); //must have 3 or more points
#if defined(DXX_BUILD_DESCENT_I)
*wp(p+28) = (short)gr_find_closest_color_15bpp(w(p+28));
#elif defined(DXX_BUILD_DESCENT_II)
(void)p;
#endif
}
void op_tmappoly(const uint8_t *const p, const uint_fast32_t nv)
{
(void)nv;
Assert(nv > 2); //must have 3 or more points
if (w(p+28) > highest_texture_num)
highest_texture_num = w(p+28);
}
void op_sortnorm(uint8_t *const p)
{
auto h = init_model_sub(p+w(p+28), highest_texture_num);
highest_texture_num = init_model_sub(p+w(p+30), h);
}
void op_subcall(uint8_t *const p)
{
highest_texture_num = init_model_sub(p+w(p+16), highest_texture_num);
}
};
constexpr const glow_values_t *g3_draw_morphing_model_state::glow_values;
}
template <typename P, typename State>
static std::size_t dispatch_polymodel_op(const P p, State &state, const uint_fast32_t op)
{
switch (op)
{
case OP_DEFPOINTS: {
const auto n = state.get_op_subcount(p);
const std::size_t record_size = n * sizeof(vms_vector) + 4;
state.op_defpoints(p, n);
return record_size;
}
case OP_DEFP_START: {
const auto n = state.get_op_subcount(p);
const std::size_t record_size = n * sizeof(vms_vector) + 8;
state.op_defp_start(p, n);
return record_size;
}
case OP_FLATPOLY: {
const auto n = state.get_op_subcount(p);
const std::size_t record_size = 30 + ((n & ~1) + 1) * 2;
state.op_flatpoly(p, n);
return record_size;
}
case OP_TMAPPOLY: {
const auto n = state.get_op_subcount(p);
const std::size_t record_size = 30 + ((n & ~1) + 1) * 2 + n * 12;
state.op_tmappoly(p, n);
return record_size;
}
case OP_SORTNORM: {
const std::size_t record_size = 32;
state.op_sortnorm(p);
return record_size;
}
case OP_RODBM: {
const std::size_t record_size = 36;
state.op_rodbm(p);
return record_size;
}
case OP_SUBCALL: {
const std::size_t record_size = 20;
state.op_subcall(p);
return record_size;
}
case OP_GLOW: {
const std::size_t record_size = 4;
state.op_glow(p);
return record_size;
}
default:
state.op_default();
return 2;
}
}
template <typename P, typename State>
static P iterate_polymodel(P p, State &state)
{
for (uint16_t op; (op = state.get_raw_opcode(p)) != OP_EOF;)
p += dispatch_polymodel_op(p, state, state.translate_opcode(p, op));
return p;
}
}
#ifdef WORDS_BIGENDIAN
namespace dcx {
static inline fix *fp(uint8_t *p)
{
return reinterpret_cast<fix *>(p);
}
static inline vms_vector *vp(uint8_t *p)
{
return reinterpret_cast<vms_vector *>(p);
}
static void short_swap(short *s)
{
*s = SWAPSHORT(*s);
}
static void fix_swap(fix &f)
{
f = (fix)SWAPINT((int)f);
}
static void fix_swap(fix *f)
{
fix_swap(*f);
}
static void vms_vector_swap(vms_vector &v)
{
fix_swap(v.x);
fix_swap(v.y);
fix_swap(v.z);
}
namespace {
class swap_polygon_model_data_state : public interpreter_base
{
public:
static uint_fast32_t translate_opcode(uint8_t *const p, const uint16_t op)
{
return *wp(p) = INTEL_SHORT(op);
}
static uint16_t get_op_subcount(const uint8_t *const p)
{
return SWAPSHORT(w(p + 2));
}
static void op_defpoints(uint8_t *const p, const uint_fast32_t n)
{
*wp(p + 2) = n;
for (uint_fast32_t i = 0; i != n; ++i)
vms_vector_swap(*vp((p + 4) + (i * sizeof(vms_vector))));
}
static void op_defp_start(uint8_t *const p, const uint_fast32_t n)
{
*wp(p + 2) = n;
short_swap(wp(p + 4));
for (uint_fast32_t i = 0; i != n; ++i)
vms_vector_swap(*vp((p + 8) + (i * sizeof(vms_vector))));
}
static void op_flatpoly(uint8_t *const p, const uint_fast32_t n)
{
*wp(p + 2) = n;
vms_vector_swap(*vp(p + 4));
vms_vector_swap(*vp(p + 16));
short_swap(wp(p+28));
for (uint_fast32_t i = 0; i < n; ++i)
short_swap(wp(p + 30 + (i * 2)));
}
static void op_tmappoly(uint8_t *const p, const uint_fast32_t n)
{
*wp(p + 2) = n;
vms_vector_swap(*vp(p + 4));
vms_vector_swap(*vp(p + 16));
for (uint_fast32_t i = 0; i != n; ++i) {
const auto uvl_val = reinterpret_cast<g3s_uvl *>((p+30+((n&~1)+1)*2) + (i * sizeof(g3s_uvl)));
fix_swap(&uvl_val->u);
fix_swap(&uvl_val->v);
}
short_swap(wp(p+28));
for (uint_fast32_t i = 0; i != n; ++i)
short_swap(wp(p + 30 + (i * 2)));
}
void op_sortnorm(uint8_t *const p)
{
vms_vector_swap(*vp(p + 4));
vms_vector_swap(*vp(p + 16));
short_swap(wp(p + 28));
short_swap(wp(p + 30));
swap_polygon_model_data(p + w(p+28));
swap_polygon_model_data(p + w(p+30));
}
static void op_rodbm(uint8_t *const p)
{
vms_vector_swap(*vp(p + 20));
vms_vector_swap(*vp(p + 4));
short_swap(wp(p+2));
fix_swap(fp(p + 16));
fix_swap(fp(p + 32));
}
void op_subcall(uint8_t *const p)
{
short_swap(wp(p+2));
vms_vector_swap(*vp(p+4));
short_swap(wp(p+16));
swap_polygon_model_data(p + w(p+16));
}
static void op_glow(uint8_t *const p)
{
short_swap(wp(p + 2));
}
};
}
void swap_polygon_model_data(ubyte *data)
{
swap_polygon_model_data_state state;
iterate_polymodel(data, state);
}
}
#endif
#ifdef WORDS_NEED_ALIGNMENT
namespace dcx {
static void add_chunk(const uint8_t *old_base, uint8_t *new_base, int offset,
chunk *chunk_list, int *no_chunks)
{
Assert(*no_chunks + 1 < MAX_CHUNKS); //increase MAX_CHUNKS if you get this
chunk_list[*no_chunks].old_base = old_base;
chunk_list[*no_chunks].new_base = new_base;
chunk_list[*no_chunks].offset = offset;
chunk_list[*no_chunks].correction = 0;
(*no_chunks)++;
}
namespace {
class get_chunks_state :
public interpreter_ignore_op_defpoints,
public interpreter_ignore_op_defp_start,
public interpreter_ignore_op_flatpoly,
public interpreter_ignore_op_tmappoly,
public interpreter_ignore_op_rodbm,
public interpreter_ignore_op_glow,
public interpreter_base
{
const uint8_t *const data;
uint8_t *const new_data;
chunk *const list;
int *const no;
public:
get_chunks_state(const uint8_t *data, uint8_t *ndata, chunk *l, int *n) :
data(data), new_data(ndata), list(l), no(n)
{
}
static uint_fast32_t translate_opcode(const uint8_t *, const uint16_t op)
{
return INTEL_SHORT(op);
}
static uint16_t get_op_subcount(const uint8_t *const p)
{
return GET_INTEL_SHORT(p + 2);
}
void op_sortnorm(const uint8_t *const p)
{
add_chunk(p, p - data + new_data, 28, list, no);
add_chunk(p, p - data + new_data, 30, list, no);
}
void op_subcall(const uint8_t *const p)
{
add_chunk(p, p - data + new_data, 16, list, no);
}
};
}
/*
* finds what chunks the data points to, adds them to the chunk_list,
* and returns the length of the current chunk
*/
int get_chunks(const uint8_t *data, uint8_t *new_data, chunk *list, int *no)
{
get_chunks_state state(data, new_data, list, no);
auto p = iterate_polymodel(data, state);
return p + 2 - data;
}
}
#endif //def WORDS_NEED_ALIGNMENT
namespace dsx {
// check a polymodel for it's color and return it
int g3_poly_get_color(const uint8_t *p)
{
g3_poly_get_color_state state;
iterate_polymodel(p, state);
return state.color;
}
//calls the object interpreter to render an object. The object renderer
//is really a seperate pipeline. returns true if drew
void g3_draw_polygon_model(const uint8_t *p, grs_bitmap **model_bitmaps, const submodel_angles anim_angles, g3s_lrgb model_light, const glow_values_t *glow_values, polygon_model_points &Interp_point_list)
{
g3_draw_polygon_model_state state(model_bitmaps, anim_angles, model_light, glow_values, Interp_point_list);
iterate_polymodel(p, state);
}
#ifndef NDEBUG
static int nest_count;
#endif
//alternate interpreter for morphing object
void g3_draw_morphing_model(const uint8_t *p,grs_bitmap **model_bitmaps,const submodel_angles anim_angles,g3s_lrgb model_light,const vms_vector *new_points, polygon_model_points &Interp_point_list)
{
g3_draw_morphing_model_state state(model_bitmaps, anim_angles, model_light, new_points, Interp_point_list);
iterate_polymodel(p, state);
}
static int16_t init_model_sub(uint8_t *p, int16_t highest_texture_num)
{
init_model_sub_state state(highest_texture_num);
Assert(++nest_count < 1000);
iterate_polymodel(p, state);
return state.highest_texture_num;
}
//init code for bitmap models
int16_t g3_init_polygon_model(void *model_ptr)
{
#ifndef NDEBUG
nest_count = 0;
#endif
return init_model_sub(reinterpret_cast<uint8_t *>(model_ptr), -1);
}
}