skylark-qmk/quantum/wpm.c
2022-11-05 19:05:01 +00:00

178 lines
6.1 KiB
C

/*
* Copyright 2020 Richard Sutherland (rich@brickbots.com)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "wpm.h"
#include "timer.h"
#include "keycode.h"
#include "quantum_keycodes.h"
#include "action_util.h"
#include <math.h>
// WPM Stuff
static uint8_t current_wpm = 0;
static uint32_t wpm_timer = 0;
/* The WPM calculation works by specifying a certain number of 'periods' inside
* a ring buffer, and we count the number of keypresses which occur in each of
* those periods. Then to calculate WPM, we add up all of the keypresses in
* the whole ring buffer, divide by the number of keypresses in a 'word', and
* then adjust for how much time is captured by our ring buffer. The size
* of the ring buffer can be configured using the keymap configuration
* value `WPM_SAMPLE_PERIODS`.
*
*/
#define MAX_PERIODS (WPM_SAMPLE_PERIODS)
#define PERIOD_DURATION (1000 * WPM_SAMPLE_SECONDS / MAX_PERIODS)
static int16_t period_presses[MAX_PERIODS] = {0};
static uint8_t current_period = 0;
static uint8_t periods = 1;
#if !defined(WPM_UNFILTERED)
/* LATENCY is used as part of filtering, and controls how quickly the reported
* WPM trails behind our actual instantaneous measured WPM value, and is
* defined in milliseconds. So for LATENCY == 100, the displayed WPM is
* smoothed out over periods of 0.1 seconds. This results in a nice,
* smoothly-moving reported WPM value which nevertheless is never more than
* 0.1 seconds behind the typist's actual current WPM.
*
* LATENCY is not used if WPM_UNFILTERED is defined.
*/
# define LATENCY (100)
static uint32_t smoothing_timer = 0;
static uint8_t prev_wpm = 0;
static uint8_t next_wpm = 0;
#endif
void set_current_wpm(uint8_t new_wpm) {
current_wpm = new_wpm;
}
uint8_t get_current_wpm(void) {
return current_wpm;
}
bool wpm_keycode(uint16_t keycode) {
return wpm_keycode_kb(keycode);
}
__attribute__((weak)) bool wpm_keycode_kb(uint16_t keycode) {
return wpm_keycode_user(keycode);
}
__attribute__((weak)) bool wpm_keycode_user(uint16_t keycode) {
if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX) || (keycode >= QK_MODS && keycode <= QK_MODS_MAX)) {
keycode = keycode & 0xFF;
} else if (keycode > 0xFF) {
keycode = 0;
}
if ((keycode >= KC_A && keycode <= KC_0) || (keycode >= KC_TAB && keycode <= KC_SLASH)) {
return true;
}
return false;
}
#if defined(WPM_ALLOW_COUNT_REGRESSION)
__attribute__((weak)) uint8_t wpm_regress_count(uint16_t keycode) {
bool weak_modded = (keycode >= QK_LCTL && keycode < QK_LSFT) || (keycode >= QK_RCTL && keycode < QK_RSFT);
if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX) || (keycode >= QK_MODS && keycode <= QK_MODS_MAX)) {
keycode = keycode & 0xFF;
} else if (keycode > 0xFF) {
keycode = 0;
}
if (keycode == KC_DELETE || keycode == KC_BACKSPACE) {
if (((get_mods() | get_oneshot_mods()) & MOD_MASK_CTRL) || weak_modded) {
return WPM_ESTIMATED_WORD_SIZE;
} else {
return 1;
}
} else {
return 0;
}
}
#endif
// Outside 'raw' mode we smooth results over time.
void update_wpm(uint16_t keycode) {
if (wpm_keycode(keycode) && period_presses[current_period] < INT16_MAX) {
period_presses[current_period]++;
}
#if defined(WPM_ALLOW_COUNT_REGRESSION)
uint8_t regress = wpm_regress_count(keycode);
if (regress && period_presses[current_period] > INT16_MIN) {
period_presses[current_period]--;
}
#endif
}
void decay_wpm(void) {
int32_t presses = period_presses[0];
for (int i = 1; i <= periods; i++) {
presses += period_presses[i];
}
if (presses < 0) {
presses = 0;
}
int32_t elapsed = timer_elapsed32(wpm_timer);
uint32_t duration = (((periods)*PERIOD_DURATION) + elapsed);
int32_t wpm_now = (60000 * presses) / (duration * WPM_ESTIMATED_WORD_SIZE);
if (wpm_now < 0) // set some reasonable WPM measurement limits
wpm_now = 0;
if (wpm_now > 240) wpm_now = 240;
if (elapsed > PERIOD_DURATION) {
current_period = (current_period + 1) % MAX_PERIODS;
period_presses[current_period] = 0;
periods = (periods < MAX_PERIODS - 1) ? periods + 1 : MAX_PERIODS - 1;
elapsed = 0;
wpm_timer = timer_read32();
}
if (presses < 2) // don't guess high WPM based on a single keypress.
wpm_now = 0;
#if defined(WPM_LAUNCH_CONTROL)
/*
* If the `WPM_LAUNCH_CONTROL` option is enabled, then whenever our WPM
* drops to absolute zero due to no typing occurring within our sample
* ring buffer, we reset and start measuring fresh, which lets our WPM
* immediately reach the correct value even before a full sampling buffer
* has been filled.
*/
if (presses == 0) {
current_period = 0;
periods = 0;
wpm_now = 0;
period_presses[0] = 0;
}
#endif // WPM_LAUNCH_CONTROL
#if defined(WPM_UNFILTERED)
current_wpm = wpm_now;
#else
int32_t latency = timer_elapsed32(smoothing_timer);
if (latency > LATENCY) {
smoothing_timer = timer_read32();
prev_wpm = current_wpm;
next_wpm = wpm_now;
}
current_wpm = prev_wpm + (latency * ((int)next_wpm - (int)prev_wpm) / LATENCY);
#endif
}