skylark-qmk/drivers/issi/is31fl3731.c
James Laird-Wah f70f45ee67 RGB Matrix refactoring to open up for new drivers (#3913)
* rgb_matrix: use a driver ops struct

This is intended to avoid #ifdef proliferation on adding more drivers,
eg. model01, which use different architectures.

* rgb_matrix: document driver struct members

* rgb_matrix: remove unused LED testing code

* rgb_matrix: don't build into IS31x drivers unless being used

* rgb_matrix: refactor make config options

This ensures that the necessary files are included for any custom
RGB_MATRIX_ENABLE value, without having to add entries here for specific
boards. This particularly affects model01 because its controller is
integrated and won't be used anywhere else, so it's preferable not to
put it in common_features.mk.

This now validates the value of RGB_MATRIX_ENABLE.

It was necessary to fix an error in ergodox_ez rules.mk using the wrong
comment separator, yielding an invalid value.

* IS31x drivers: don't write the control registers all the time

This is only needed when they are changed. This is done in init() and
board- or keymap-specific code is free to make further changes.

* rgb_matrix: move structs from chip drivers to rgb_matrix_drivers.c

This approach is specific to the rgb_matrix functionality, so keep it
neatly separated from the raw chip drivers.
2018-09-27 10:40:18 -04:00

270 lines
8.5 KiB
C

/* Copyright 2017 Jason Williams
* Copyright 2018 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef __AVR__
#include <avr/interrupt.h>
#include <avr/io.h>
#include <util/delay.h>
#else
#include "wait.h"
#endif
#include "is31fl3731.h"
#include <string.h>
#include "i2c_master.h"
#include "progmem.h"
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define ISSI_ADDR_DEFAULT 0x74
#define ISSI_REG_CONFIG 0x00
#define ISSI_REG_CONFIG_PICTUREMODE 0x00
#define ISSI_REG_CONFIG_AUTOPLAYMODE 0x08
#define ISSI_REG_CONFIG_AUDIOPLAYMODE 0x18
#define ISSI_CONF_PICTUREMODE 0x00
#define ISSI_CONF_AUTOFRAMEMODE 0x04
#define ISSI_CONF_AUDIOMODE 0x08
#define ISSI_REG_PICTUREFRAME 0x01
#define ISSI_REG_SHUTDOWN 0x0A
#define ISSI_REG_AUDIOSYNC 0x06
#define ISSI_COMMANDREGISTER 0xFD
#define ISSI_BANK_FUNCTIONREG 0x0B // helpfully called 'page nine'
#ifndef ISSI_TIMEOUT
#define ISSI_TIMEOUT 100
#endif
#ifndef ISSI_PERSISTENCE
#define ISSI_PERSISTENCE 0
#endif
// Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[20];
// These buffers match the IS31FL3731 PWM registers 0x24-0xB3.
// Storing them like this is optimal for I2C transfers to the registers.
// We could optimize this and take out the unused registers from these
// buffers and the transfers in IS31FL3731_write_pwm_buffer() but it's
// probably not worth the extra complexity.
uint8_t g_pwm_buffer[DRIVER_COUNT][144];
bool g_pwm_buffer_update_required = false;
uint8_t g_led_control_registers[DRIVER_COUNT][18] = { { 0 }, { 0 } };
bool g_led_control_registers_update_required = false;
// This is the bit pattern in the LED control registers
// (for matrix A, add one to register for matrix B)
//
// reg - b7 b6 b5 b4 b3 b2 b1 b0
// 0x00 - R08,R07,R06,R05,R04,R03,R02,R01
// 0x02 - G08,G07,G06,G05,G04,G03,G02,R00
// 0x04 - B08,B07,B06,B05,B04,B03,G01,G00
// 0x06 - - , - , - , - , - ,B02,B01,B00
// 0x08 - - , - , - , - , - , - , - , -
// 0x0A - B17,B16,B15, - , - , - , - , -
// 0x0C - G17,G16,B14,B13,B12,B11,B10,B09
// 0x0E - R17,G15,G14,G13,G12,G11,G10,G09
// 0x10 - R16,R15,R14,R13,R12,R11,R10,R09
void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data )
{
g_twi_transfer_buffer[0] = reg;
g_twi_transfer_buffer[1] = data;
#if ISSI_PERSISTENCE > 0
for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) == 0)
break;
}
#else
i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT);
#endif
}
void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )
{
// assumes bank is already selected
// transmit PWM registers in 9 transfers of 16 bytes
// g_twi_transfer_buffer[] is 20 bytes
// iterate over the pwm_buffer contents at 16 byte intervals
for ( int i = 0; i < 144; i += 16 ) {
// set the first register, e.g. 0x24, 0x34, 0x44, etc.
g_twi_transfer_buffer[0] = 0x24 + i;
// copy the data from i to i+15
// device will auto-increment register for data after the first byte
// thus this sets registers 0x24-0x33, 0x34-0x43, etc. in one transfer
for ( int j = 0; j < 16; j++ ) {
g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j];
}
#if ISSI_PERSISTENCE > 0
for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT) == 0)
break;
}
#else
i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT);
#endif
}
}
void IS31FL3731_init( uint8_t addr )
{
// In order to avoid the LEDs being driven with garbage data
// in the LED driver's PWM registers, first enable software shutdown,
// then set up the mode and other settings, clear the PWM registers,
// then disable software shutdown.
// select "function register" bank
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
// enable software shutdown
IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 );
// this delay was copied from other drivers, might not be needed
#ifdef __AVR__
_delay_ms( 10 );
#else
wait_ms(10);
#endif
// picture mode
IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE );
// display frame 0
IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 );
// audio sync off
IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 );
// select bank 0
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
// turn off all LEDs in the LED control register
for ( int i = 0x00; i <= 0x11; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// turn off all LEDs in the blink control register (not really needed)
for ( int i = 0x12; i <= 0x23; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// set PWM on all LEDs to 0
for ( int i = 0x24; i <= 0xB3; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// select "function register" bank
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
// disable software shutdown
IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 );
// select bank 0 and leave it selected.
// most usage after initialization is just writing PWM buffers in bank 0
// as there's not much point in double-buffering
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
}
void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue )
{
if ( index >= 0 && index < DRIVER_LED_TOTAL ) {
is31_led led = g_is31_leds[index];
// Subtract 0x24 to get the second index of g_pwm_buffer
g_pwm_buffer[led.driver][led.r - 0x24] = red;
g_pwm_buffer[led.driver][led.g - 0x24] = green;
g_pwm_buffer[led.driver][led.b - 0x24] = blue;
g_pwm_buffer_update_required = true;
}
}
void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue )
{
for ( int i = 0; i < DRIVER_LED_TOTAL; i++ )
{
IS31FL3731_set_color( i, red, green, blue );
}
}
void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, bool blue )
{
is31_led led = g_is31_leds[index];
uint8_t control_register_r = (led.r - 0x24) / 8;
uint8_t control_register_g = (led.g - 0x24) / 8;
uint8_t control_register_b = (led.b - 0x24) / 8;
uint8_t bit_r = (led.r - 0x24) % 8;
uint8_t bit_g = (led.g - 0x24) % 8;
uint8_t bit_b = (led.b - 0x24) % 8;
if ( red ) {
g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r);
} else {
g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r);
}
if ( green ) {
g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g);
} else {
g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g);
}
if ( blue ) {
g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b);
} else {
g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b);
}
g_led_control_registers_update_required = true;
}
void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 )
{
if ( g_pwm_buffer_update_required )
{
IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] );
IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] );
}
g_pwm_buffer_update_required = false;
}
void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 )
{
if ( g_led_control_registers_update_required )
{
for ( int i=0; i<18; i++ )
{
IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] );
IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] );
}
}
}