#include "normalise.hh" #include "eval.hh" #include "globals.hh" #include "nixexpr-ast.hh" /* Load and evaluate an expression from path specified by the argument. */ static Expr primImport(EvalState & state, const ATermVector & args) { ATerm path; Expr fn = evalExpr(state, args[0]); if (!matchPath(fn, path)) throw Error("path expected"); return evalFile(state, aterm2String(path)); } static PathSet storeExprRootsCached(EvalState & state, const Path & nePath) { DrvRoots::iterator i = state.drvRoots.find(nePath); if (i != state.drvRoots.end()) return i->second; else { PathSet paths = storeExprRoots(nePath); state.drvRoots[nePath] = paths; return paths; } } /* Returns the hash of a derivation modulo fixed-output subderivations. A fixed-output derivation is a derivation with one output (`out') for which an expected hash and hash algorithm are specified (using the `outputHash' and `outputHashAlgo' attributes). We don't want changes to such derivations to propagate upwards through the dependency graph, changing output paths everywhere. For instance, if we change the url in a call to the `fetchurl' function, we do not want to rebuild everything depending on it (after all, (the hash of) the file being downloaded is unchanged). So the *output paths* should not change. On the other hand, the *derivation store expression paths* should change to reflect the new dependency graph. That's what this function does: it returns a hash which is just the of the derivation ATerm, except that any input store expression paths have been replaced by the result of a recursive call to this function, and that for fixed-output derivations we return (basically) its outputHash. */ static Hash hashDerivationModulo(EvalState & state, StoreExpr ne) { if (ne.type == StoreExpr::neDerivation) { /* Return a fixed hash for fixed-output derivations. */ if (ne.derivation.outputs.size() == 1) { DerivationOutputs::iterator i = ne.derivation.outputs.begin(); if (i->first == "out" && i->second.hash != "") { return hashString(htSHA256, "fixed:out:" + i->second.hashAlgo + ":" + i->second.hash + ":" + i->second.path); } } /* For other derivations, replace the inputs paths with recursive calls to this function.*/ PathSet inputs2; for (PathSet::iterator i = ne.derivation.inputs.begin(); i != ne.derivation.inputs.end(); ++i) { Hash h = state.drvHashes[*i]; if (h.type == htUnknown) { StoreExpr ne2 = storeExprFromPath(*i); h = hashDerivationModulo(state, ne2); state.drvHashes[*i] = h; } inputs2.insert(printHash(h)); } ne.derivation.inputs = inputs2; } return hashTerm(unparseStoreExpr(ne)); } static Path copyAtom(EvalState & state, const Path & srcPath) { /* !!! should be cached */ Path dstPath(addToStore(srcPath)); ClosureElem elem; StoreExpr ne; ne.type = StoreExpr::neClosure; ne.closure.roots.insert(dstPath); ne.closure.elems[dstPath] = elem; Path drvPath = writeTerm(unparseStoreExpr(ne), "c"); /* !!! can we get rid of drvRoots? */ state.drvRoots[drvPath] = ne.closure.roots; /* Optimisation, but required in read-only mode! because in that case we don't actually write store expressions, so we can't read them later. */ state.drvHashes[drvPath] = hashDerivationModulo(state, ne); printMsg(lvlChatty, format("copied `%1%' -> closure `%2%'") % srcPath % drvPath); return drvPath; } static string addInput(EvalState & state, Path & nePath, StoreExpr & ne) { PathSet paths = storeExprRootsCached(state, nePath); if (paths.size() != 1) abort(); Path path = *(paths.begin()); ne.derivation.inputs.insert(nePath); return path; } static void processBinding(EvalState & state, Expr e, StoreExpr & ne, Strings & ss) { e = evalExpr(state, e); ATerm s; ATermList es; int n; Expr e1, e2; if (matchStr(e, s)) ss.push_back(aterm2String(s)); else if (matchUri(e, s)) ss.push_back(aterm2String(s)); else if (e == eTrue) ss.push_back("1"); else if (e == eFalse) ss.push_back(""); else if (matchInt(e, n)) { ostringstream st; st << n; ss.push_back(st.str()); } else if (matchAttrs(e, es)) { Expr a = queryAttr(e, "type"); if (a && evalString(state, a) == "derivation") { a = queryAttr(e, "drvPath"); if (!a) throw Error("derivation name missing"); Path drvPath = evalPath(state, a); a = queryAttr(e, "outPath"); if (!a) throw Error("output path missing"); PathSet drvRoots; drvRoots.insert(evalPath(state, a)); state.drvRoots[drvPath] = drvRoots; ss.push_back(addInput(state, drvPath, ne)); } else throw Error("invalid derivation attribute"); } else if (matchPath(e, s)) { Path drvPath = copyAtom(state, aterm2String(s)); ss.push_back(addInput(state, drvPath, ne)); } else if (matchList(e, es)) { for (ATermIterator i(es); i; ++i) { startNest(nest, lvlVomit, format("processing list element")); processBinding(state, evalExpr(state, *i), ne, ss); } } else if (matchNull(e)) ss.push_back(""); else if (matchSubPath(e, e1, e2)) { Strings ss2; processBinding(state, evalExpr(state, e1), ne, ss2); if (ss2.size() != 1) throw Error("left-hand side of `~' operator cannot be a list"); e2 = evalExpr(state, e2); if (!(matchStr(e2, s) || matchPath(e2, s))) throw Error("right-hand side of `~' operator must be a path or string"); ss.push_back(canonPath(ss2.front() + "/" + aterm2String(s))); } else throw Error("invalid derivation attribute"); } static string concatStrings(const Strings & ss) { string s; bool first = true; for (Strings::const_iterator i = ss.begin(); i != ss.end(); ++i) { if (!first) s += " "; else first = false; s += *i; } return s; } /* Construct (as a unobservable side effect) a Nix derivation expression that performs the derivation described by the argument set. Returns the original set extended with the following attributes: `outPath' containing the primary output path of the derivation; `drvPath' containing the path of the Nix expression; and `type' set to `derivation' to indicate that this is a derivation. */ static Expr primDerivation(EvalState & state, const ATermVector & _args) { startNest(nest, lvlVomit, "evaluating derivation"); ATermMap attrs; Expr args = _args[0]; args = evalExpr(state, args); queryAllAttrs(args, attrs, true); /* Build the derivation expression by processing the attributes. */ StoreExpr ne; ne.type = StoreExpr::neDerivation; string drvName; string outputHash; string outputHashAlgo; for (ATermIterator i(attrs.keys()); i; ++i) { string key = aterm2String(*i); ATerm value; Expr pos; ATerm rhs = attrs.get(key); if (!matchAttrRHS(rhs, value, pos)) abort(); startNest(nest, lvlVomit, format("processing attribute `%1%'") % key); Strings ss; try { processBinding(state, value, ne, ss); } catch (Error & e) { throw Error(format("while processing the derivation attribute `%1%' at %2%:\n%3%") % key % showPos(pos) % e.msg()); } /* The `args' attribute is special: it supplies the command-line arguments to the builder. */ if (key == "args") { for (Strings::iterator i = ss.begin(); i != ss.end(); ++i) ne.derivation.args.push_back(*i); } /* All other attributes are passed to the builder through the environment. */ else { string s = concatStrings(ss); ne.derivation.env[key] = s; if (key == "builder") ne.derivation.builder = s; else if (key == "system") ne.derivation.platform = s; else if (key == "name") drvName = s; else if (key == "outputHash") outputHash = s; else if (key == "outputHashAlgo") outputHashAlgo = s; } } /* Do we have all required attributes? */ if (ne.derivation.builder == "") throw Error("required attribute `builder' missing"); if (ne.derivation.platform == "") throw Error("required attribute `system' missing"); if (drvName == "") throw Error("required attribute `name' missing"); /* If an output hash was given, check it. */ if (outputHash == "") outputHashAlgo = ""; else { HashType ht = parseHashType(outputHashAlgo); if (ht == htUnknown) throw Error(format("unknown hash algorithm `%1%'") % outputHashAlgo); Hash h; if (outputHash.size() == Hash(ht).hashSize * 2) /* hexadecimal representation */ h = parseHash(ht, outputHash); else /* base-32 representation */ h = parseHash32(ht, outputHash); string s = outputHash; outputHash = printHash(h); } /* Check the derivation name. It shouldn't contain whitespace, but we are conservative here: we check whether only alphanumerics and some other characters appear. */ string validChars = "+-._?="; for (string::iterator i = drvName.begin(); i != drvName.end(); ++i) if (!((*i >= 'A' && *i <= 'Z') || (*i >= 'a' && *i <= 'z') || (*i >= '0' && *i <= '9') || validChars.find(*i) != string::npos)) { throw Error(format("invalid character `%1%' in derivation name `%2%'") % *i % drvName); } /* Construct the "masked" derivation store expression, which is the final one except that in the list of outputs, the output paths are empty, and the corresponding environment variables have an empty value. This ensures that changes in the set of output names do get reflected in the hash. */ ne.derivation.env["out"] = ""; ne.derivation.outputs["out"] = DerivationOutput("", outputHashAlgo, outputHash); /* Use the masked derivation expression to compute the output path. */ Path outPath = makeStorePath("output:out", hashDerivationModulo(state, ne), drvName); /* Construct the final derivation store expression. */ ne.derivation.env["out"] = outPath; ne.derivation.outputs["out"] = DerivationOutput(outPath, outputHashAlgo, outputHash); /* Write the resulting term into the Nix store directory. */ Path drvPath = writeTerm(unparseStoreExpr(ne), "d-" + drvName); printMsg(lvlChatty, format("instantiated `%1%' -> `%2%'") % drvName % drvPath); /* Optimisation, but required in read-only mode! because in that case we don't actually write store expressions, so we can't read them later. */ state.drvHashes[drvPath] = hashDerivationModulo(state, ne); /* !!! assumes a single output */ attrs.set("outPath", makeAttrRHS(makePath(toATerm(outPath)), makeNoPos())); attrs.set("drvPath", makeAttrRHS(makePath(toATerm(drvPath)), makeNoPos())); attrs.set("type", makeAttrRHS(makeStr(toATerm("derivation")), makeNoPos())); return makeAttrs(attrs); } /* Return the base name of the given string, i.e., everything following the last slash. */ static Expr primBaseNameOf(EvalState & state, const ATermVector & args) { return makeStr(toATerm(baseNameOf(evalString(state, args[0])))); } /* Convert the argument (which can be a path or a uri) to a string. */ static Expr primToString(EvalState & state, const ATermVector & args) { Expr arg = evalExpr(state, args[0]); ATerm s; if (matchStr(arg, s) || matchPath(arg, s) || matchUri(arg, s)) return makeStr(s); else throw Error("cannot coerce value to string"); } /* Boolean constructors. */ static Expr primTrue(EvalState & state, const ATermVector & args) { return eTrue; } static Expr primFalse(EvalState & state, const ATermVector & args) { return eFalse; } /* Return the null value. */ Expr primNull(EvalState & state, const ATermVector & args) { return makeNull(); } /* Determine whether the argument is the null value. */ Expr primIsNull(EvalState & state, const ATermVector & args) { return makeBool(matchNull(evalExpr(state, args[0]))); } /* Apply a function to every element of a list. */ Expr primMap(EvalState & state, const ATermVector & args) { Expr fun = evalExpr(state, args[0]); Expr list = evalExpr(state, args[1]); ATermList list2; if (!matchList(list, list2)) throw Error("`map' expects a list as its second argument"); ATermList list3 = ATempty; for (ATermIterator i(list2); i; ++i) list3 = ATinsert(list3, makeCall(fun, *i)); return makeList(ATreverse(list3)); } void EvalState::addPrimOps() { addPrimOp("true", 0, primTrue); addPrimOp("false", 0, primFalse); addPrimOp("null", 0, primNull); addPrimOp("import", 1, primImport); addPrimOp("derivation", 1, primDerivation); addPrimOp("baseNameOf", 1, primBaseNameOf); addPrimOp("toString", 1, primToString); addPrimOp("isNull", 1, primIsNull); addPrimOp("map", 2, primMap); }