This repository has been archived on 2024-10-22. You can view files and clone it, but cannot push or open issues or pull requests.
guile-prescheme/ps-compiler/util/ssa.scm
2022-08-02 00:39:18 +10:00

198 lines
6.6 KiB
Scheme

;;; Ported from Scheme 48 1.9. See file COPYING for notices and license.
;;;
;;; Port Author: Andrew Whatson
;;;
;;; Original Authors: Richard Kelsey
;;;
;;; scheme48-1.9.2/ps-compiler/util/ssa.scm
;;;
;;; Finding where to put phi-functions.
;;;
;;; First call:
;;; (GRAPH->SSA-GRAPH! <root-node> <node-successors> <node-temp> <set-node-temp!>)
;;;
;;; Then:
;;; (FIND-JOINS <nodes> <node-temp>)
;;; will return the list of nodes N for which there are (at least) two paths
;;; ... N_0 M_0 ... M_i N and ... N_1 P_0 ... P_j N such that N_0 and N_1
;;; are distinct members of <nodes> and the M's and P's are disjoint sets.
;;;
;;; Algorithm from:
;;; Efficiently computing static single assignment form and the control
;;; dependence graph,
;;; Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
;;; F. Kenneth Zadeck,
;;; ACM Transactions on Programming Languages and Systems 1991 13(4)
;;; pages 451-490
(define-module (ps-compiler util ssa)
#:use-module (srfi srfi-9)
#:use-module (prescheme scheme48)
#:use-module (ps-compiler util dominators)
#:export (graph->ssa-graph! find-joins))
(define-record-type :node
(really-make-node data use-uid predecessors dominator dominated
seen-mark join-mark)
node?
(data node-data) ;; user's stuff
(use-uid node-use-uid) ;; distinguishes between different invocations
(successors node-successors ;; parents
set-node-successors!)
(predecessors node-predecessors ;; and children in the graph
set-node-predecessors!)
(dominator node-dominator ;; parent ;; initialize for goofy dominator code
set-node-dominator!)
(dominated node-dominated ;; and children in the dominator tree
set-node-dominated!)
(frontier node-frontier ;; dominator frontier
set-node-frontier!)
(seen-mark node-seen-mark ;; two markers used in
set-node-seen-mark!)
(join-mark node-join-mark ;; the ssa algorithm
set-node-join-mark!))
(define (make-node data use-uid)
(really-make-node data
use-uid
'() ;; predecessors
#f ;; dominator
'() ;; dominated
-1 ;; see-mark
-1)) ;; join-mark
(define (graph->ssa-graph! root successors temp set-temp!)
(let ((graph (real-graph->ssa-graph root successors temp set-temp!)))
(find-dominators! (car graph)
node-successors node-predecessors
node-dominator set-node-dominator!)
(for-each (lambda (node)
(let ((dom (node-dominator node)))
(set-node-dominated! dom (cons node (node-dominated dom)))))
(cdr graph)) ;; root has no dominator
(find-frontiers! (car graph))
(values)))
;; Turn the user's graph into a NODE graph.
(define (real-graph->ssa-graph root successors temp set-temp!)
(let ((uid (next-uid))
(nodes '()))
(let recur ((data root))
(let ((node (temp data)))
(if (and (node? node)
(= uid (node-use-uid node)))
node
(let ((node (make-node data uid)))
(set! nodes (cons node nodes))
(set-temp! data node)
(let ((succs (map recur (successors data))))
(for-each (lambda (succ)
(set-node-predecessors! succ
(cons node (node-predecessors succ))))
succs)
(set-node-successors! node succs))
node))))
(if (any (lambda (node)
(not (eq? node (temp (node-data node)))))
nodes)
(breakpoint "graph made incorrectly"))
(reverse! nodes))) ;; root ends up at front
;; Find the dominance frontiers of the nodes in a graph.
(define (find-frontiers! node)
(let ((frontier (let loop ((succs (node-successors node)) (frontier '()))
(if (null? succs)
frontier
(loop (cdr succs)
(if (eq? node (node-dominator (car succs)))
frontier
(cons (car succs) frontier)))))))
(let loop ((kids (node-dominated node)) (frontier frontier))
(cond ((null? kids)
(set-node-frontier! node frontier)
frontier)
(else
(let kid-loop ((kid-frontier (find-frontiers! (car kids)))
(frontier frontier))
(if (null? kid-frontier)
(loop (cdr kids) frontier)
(kid-loop (cdr kid-frontier)
(if (eq? node (node-dominator (car kid-frontier)))
frontier
(cons (car kid-frontier) frontier))))))))))
(define (find-joins nodes temp)
(for-each (lambda (n)
(if (not (node? (temp n)))
(begin
(breakpoint "node not seen before ~s" n)
n)))
nodes)
(map node-data (really-find-joins (map temp nodes))))
(define (really-find-joins nodes)
(let ((marker (next-uid)))
(for-each (lambda (n)
(set-node-seen-mark! n marker))
nodes)
(let loop ((to-do nodes) (joins '()))
(if (null? to-do)
joins
(let frontier-loop ((frontier (node-frontier (car to-do)))
(to-do (cdr to-do))
(joins joins))
(cond ((null? frontier)
(loop to-do joins))
((eq? marker (node-join-mark (car frontier)))
(frontier-loop (cdr frontier) to-do joins))
(else
(let ((node (car frontier)))
(set-node-join-mark! node marker)
(frontier-loop (cdr frontier)
(if (eq? marker (node-seen-mark node))
to-do
(begin
(set-node-seen-mark! node marker)
(cons node to-do)))
(cons node joins))))))))))
;; Integers as UID's
(define *next-uid* 0)
(define (next-uid)
(let ((uid *next-uid*))
(set! *next-uid* (+ uid 1))
uid))
;;----------------------------------------------------------------
;; Testing
;;(define-record-type data
;; (name)
;; (kids
;; temp))
;;
;;(define-record-discloser type/data
;; (lambda (data)
;; (list 'data (data-name data))))
;;
;;(define (make-test-graph spec)
;; (let ((vertices (map (lambda (d)
;; (data-maker (car d)))
;; spec)))
;; (for-each (lambda (data vertex)
;; (set-data-kids! vertex (map (lambda (s)
;; (first (lambda (v)
;; (eq? s (data-name v)))
;; vertices))
;; (cdr data))))
;; spec
;; vertices)
;; vertices))
;;(define g1 (make-test-graph '((a b) (b c d) (c b e) (d d e) (e))))
;;(graph->ssa-graph (car g1) data-kids data-temp set-data-temp!)
;;(find-joins (list (list-ref g1 0)) data-temp)