dxx-rebirth/similar/main/render.cpp

1847 lines
51 KiB
C++

/*
* Portions of this file are copyright Rebirth contributors and licensed as
* described in COPYING.txt.
* Portions of this file are copyright Parallax Software and licensed
* according to the Parallax license below.
* See COPYING.txt for license details.
THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX
SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO
END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A
ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS
IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS
SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE
FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE
CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS
AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE.
COPYRIGHT 1993-1999 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED.
*/
/*
*
* Rendering Stuff
*
*/
#include <algorithm>
#include <bitset>
#include <limits>
#include <cstdlib>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "render_state.h"
#include "inferno.h"
#include "segment.h"
#include "dxxerror.h"
#include "bm.h"
#include "texmap.h"
#include "render.h"
#include "game.h"
#include "object.h"
#include "laser.h"
#include "textures.h"
#include "screens.h"
#include "segpoint.h"
#include "wall.h"
#include "texmerge.h"
#include "physics.h"
#include "3d.h"
#include "gameseg.h"
#include "vclip.h"
#include "lighting.h"
#include "cntrlcen.h"
#include "newdemo.h"
#include "automap.h"
#include "endlevel.h"
#include "key.h"
#include "newmenu.h"
#include "u_mem.h"
#include "piggy.h"
#include "timer.h"
#include "effects.h"
#include "playsave.h"
#ifdef OGL
#include "ogl_init.h"
#endif
#include "args.h"
#include "compiler-integer_sequence.h"
#include "compiler-range_for.h"
#include "partial_range.h"
#include "segiter.h"
#ifdef EDITOR
#include "editor/editor.h"
#include "editor/esegment.h"
#endif
using std::min;
using std::max;
// (former) "detail level" values
#ifdef OGL
int Render_depth = MAX_RENDER_SEGS; //how many segments deep to render
#else
int Render_depth = 20; //how many segments deep to render
unsigned Max_linear_depth = 50; // Deepest segment at which linear interpolation will be used.
#endif
//used for checking if points have been rotated
int Clear_window_color=-1;
int Clear_window=2; // 1 = Clear whole background window, 2 = clear view portals into rest of world, 0 = no clear
static uint16_t s_current_generation;
// When any render function needs to know what's looking at it, it should
// access Viewer members.
object * Viewer = NULL;
vms_vector Viewer_eye; //valid during render
fix Render_zoom = 0x9000; //the player's zoom factor
#ifndef NDEBUG
static std::bitset<MAX_OBJECTS> object_rendered;
#endif
#ifdef EDITOR
int Render_only_bottom=0;
int Bottom_bitmap_num = 9;
#endif
//Global vars for window clip test
int Window_clip_left,Window_clip_top,Window_clip_right,Window_clip_bot;
#ifdef EDITOR
int _search_mode = 0; //true if looking for curseg,side,face
short _search_x,_search_y; //pixel we're looking at
static int found_side,found_face,found_poly;
static segnum_t found_seg;
static objnum_t found_obj;
#else
static const int _search_mode = 0;
#endif
#ifdef NDEBUG //if no debug code, set these vars to constants
#ifdef EDITOR
const int Show_only_curside = 0;
#endif
#else
int Outline_mode=0,Show_only_curside=0;
int toggle_outline_mode(void)
{
return Outline_mode = !Outline_mode;
}
int toggle_show_only_curside(void)
{
return Show_only_curside = !Show_only_curside;
}
#endif
#ifndef NDEBUG
static void draw_outline(int nverts,cg3s_point *const *const pointlist)
{
int i;
gr_setcolor(BM_XRGB(63,63,63));
for (i=0;i<nverts-1;i++)
g3_draw_line(*pointlist[i],*pointlist[i+1]);
g3_draw_line(*pointlist[i],*pointlist[0]);
}
#endif
fix flash_scale;
#define FLASH_CYCLE_RATE f1_0
static const fix Flash_rate = FLASH_CYCLE_RATE;
//cycle the flashing light for when mine destroyed
void flash_frame()
{
static fixang flash_ang=0;
if (!Control_center_destroyed && !Seismic_tremor_magnitude)
return;
if (Endlevel_sequence)
return;
if (PaletteBlueAdd > 10 ) //whiting out
return;
// flash_ang += fixmul(FLASH_CYCLE_RATE,FrameTime);
#if defined(DXX_BUILD_DESCENT_II)
if (Seismic_tremor_magnitude) {
fix added_flash;
added_flash = abs(Seismic_tremor_magnitude);
if (added_flash < F1_0)
added_flash *= 16;
flash_ang += fixmul(Flash_rate, fixmul(FrameTime, added_flash+F1_0));
flash_scale = fix_fastsin(flash_ang);
flash_scale = (flash_scale + F1_0*3)/4; // gets in range 0.5 to 1.0
} else
#endif
{
flash_ang += fixmul(Flash_rate,FrameTime);
flash_scale = fix_fastsin(flash_ang);
flash_scale = (flash_scale + f1_0)/2;
#if defined(DXX_BUILD_DESCENT_II)
if (Difficulty_level == 0)
flash_scale = (flash_scale+F1_0*3)/4;
#endif
}
}
static inline int is_alphablend_eclip(int eclip_num)
{
#if defined(DXX_BUILD_DESCENT_II)
if (eclip_num == ECLIP_NUM_FORCE_FIELD)
return 1;
#endif
return eclip_num == ECLIP_NUM_FUELCEN;
}
// ----------------------------------------------------------------------------
// Render a face.
// It would be nice to not have to pass in segnum and sidenum, but
// they are used for our hideously hacked in headlight system.
// vp is a pointer to vertex ids.
// tmap1, tmap2 are texture map ids. tmap2 is the pasty one.
static void render_face(segnum_t segnum, int sidenum, unsigned nv, const array<int, 4> &vp, int tmap1, int tmap2, array<g3s_uvl, 4> uvl_copy, WALL_IS_DOORWAY_result_t wid_flags)
{
grs_bitmap *bm;
#ifdef OGL
grs_bitmap *bm2 = NULL;
#endif
array<g3s_lrgb, 4> dyn_light;
array<cg3s_point *, 4> pointlist;
Assert(nv <= pointlist.size());
for (uint_fast32_t i = 0; i < nv; i++) {
dyn_light[i].r = dyn_light[i].g = dyn_light[i].b = uvl_copy[i].l;
pointlist[i] = &Segment_points[vp[i]];
}
#if defined(DXX_BUILD_DESCENT_I)
(void)wid_flags;
#elif defined(DXX_BUILD_DESCENT_II)
//handle cloaked walls
if (wid_flags & WID_CLOAKED_FLAG) {
auto wall_num = Segments[segnum].sides[sidenum].wall_num;
Assert(wall_num != wall_none);
gr_settransblend(Walls[wall_num].cloak_value, GR_BLEND_NORMAL);
gr_setcolor(BM_XRGB(0, 0, 0)); // set to black (matters for s3)
g3_draw_poly(nv, pointlist); // draw as flat poly
gr_settransblend(GR_FADE_OFF, GR_BLEND_NORMAL);
return;
}
#endif
if (tmap1 >= NumTextures) {
#ifndef RELEASE
Int3();
#endif
Segments[segnum].sides[sidenum].tmap_num = 0;
}
#ifdef OGL
if (!GameArg.DbgUseOldTextureMerge){
PIGGY_PAGE_IN(Textures[tmap1]);
bm = &GameBitmaps[Textures[tmap1].index];
if (tmap2){
PIGGY_PAGE_IN(Textures[tmap2&0x3FFF]);
bm2 = &GameBitmaps[Textures[tmap2&0x3FFF].index];
}
if (bm2 && (bm2->bm_flags&BM_FLAG_SUPER_TRANSPARENT)){
bm = &texmerge_get_cached_bitmap( tmap1, tmap2 );
bm2 = NULL;
}
}else
#endif
// New code for overlapping textures...
if (tmap2 != 0) {
bm = &texmerge_get_cached_bitmap( tmap1, tmap2 );
} else {
bm = &GameBitmaps[Textures[tmap1].index];
PIGGY_PAGE_IN(Textures[tmap1]);
}
Assert( !(bm->bm_flags & BM_FLAG_PAGED_OUT) );
//set light values for each vertex & build pointlist
for (uint_fast32_t i = 0;i < nv;i++)
{
//the uvl struct has static light already in it
//scale static light for destruction effect
if (Control_center_destroyed || Seismic_tremor_magnitude) //make lights flash
uvl_copy[i].l = fixmul(flash_scale,uvl_copy[i].l);
//add in dynamic light (from explosions, etc.)
uvl_copy[i].l += (Dynamic_light[vp[i]].r+Dynamic_light[vp[i]].g+Dynamic_light[vp[i]].b)/3;
//saturate at max value
if (uvl_copy[i].l > MAX_LIGHT)
uvl_copy[i].l = MAX_LIGHT;
// And now the same for the ACTUAL (rgb) light we want to use
//scale static light for destruction effect
if (Seismic_tremor_magnitude) //make lights flash
dyn_light[i].r = dyn_light[i].g = dyn_light[i].b = fixmul(flash_scale,uvl_copy[i].l);
else if (Control_center_destroyed) //make lights flash
{
if (PlayerCfg.DynLightColor) // let the mine glow red a little
{
dyn_light[i].r = fixmul(flash_scale>=f0_5*1.5?flash_scale:f0_5*1.5,uvl_copy[i].l);
dyn_light[i].g = dyn_light[i].b = fixmul(flash_scale,uvl_copy[i].l);
}
else
dyn_light[i].r = dyn_light[i].g = dyn_light[i].b = fixmul(flash_scale,uvl_copy[i].l);
}
// add light color
dyn_light[i].r += Dynamic_light[vp[i]].r;
dyn_light[i].g += Dynamic_light[vp[i]].g;
dyn_light[i].b += Dynamic_light[vp[i]].b;
// saturate at max value
if (dyn_light[i].r > MAX_LIGHT)
dyn_light[i].r = MAX_LIGHT;
if (dyn_light[i].g > MAX_LIGHT)
dyn_light[i].g = MAX_LIGHT;
if (dyn_light[i].b > MAX_LIGHT)
dyn_light[i].b = MAX_LIGHT;
if (PlayerCfg.AlphaEffects) // due to additive blending, transparent sprites will become invivible in font of white surfaces (lamps). Fix that with a little desaturation
{
dyn_light[i].r *= .93;
dyn_light[i].g *= .93;
dyn_light[i].b *= .93;
}
}
bool alpha = false;
if (PlayerCfg.AlphaBlendEClips && is_alphablend_eclip(TmapInfo[tmap1].eclip_num)) // set nice transparency/blending for some special effects (if we do more, we should maybe use switch here)
{
alpha = true;
gr_settransblend(GR_FADE_OFF, GR_BLEND_ADDITIVE_C);
}
#ifdef EDITOR
if ((Render_only_bottom) && (sidenum == WBOTTOM))
g3_draw_tmap(nv,pointlist,uvl_copy,dyn_light,GameBitmaps[Textures[Bottom_bitmap_num].index]);
else
#endif
#ifdef OGL
if (bm2){
g3_draw_tmap_2(nv,pointlist,uvl_copy,dyn_light,bm,bm2,((tmap2&0xC000)>>14) & 3);
}else
#endif
g3_draw_tmap(nv,pointlist,uvl_copy,dyn_light,*bm);
if (alpha)
gr_settransblend(GR_FADE_OFF, GR_BLEND_NORMAL); // revert any transparency/blending setting back to normal
#ifndef NDEBUG
if (Outline_mode) draw_outline(nv, &pointlist[0]);
#endif
}
// ----------------------------------------------------------------------------
// Only called if editor active.
// Used to determine which face was clicked on.
static void check_face(segnum_t segnum, int sidenum, int facenum, unsigned nv, const array<int, 4> &vp, int tmap1, int tmap2, const array<g3s_uvl, 4> &uvl_copy)
{
#ifdef EDITOR
if (_search_mode) {
int save_lighting;
array<g3s_lrgb, 4> dyn_light{};
array<cg3s_point *, 4> pointlist;
#ifdef OGL
(void)tmap1;
(void)tmap2;
#else
grs_bitmap *bm;
if (tmap2 > 0 )
bm = &texmerge_get_cached_bitmap( tmap1, tmap2 );
else
bm = &GameBitmaps[Textures[tmap1].index];
#endif
for (uint_fast32_t i = 0; i < nv; i++) {
dyn_light[i].r = dyn_light[i].g = dyn_light[i].b = uvl_copy[i].l;
pointlist[i] = &Segment_points[vp[i]];
}
gr_setcolor(0);
#ifdef OGL
ogl_end_frame();
#endif
gr_pixel(_search_x,_search_y); //set our search pixel to color zero
#ifdef OGL
ogl_start_frame();
#endif
gr_setcolor(1); //and render in color one
save_lighting = Lighting_on;
Lighting_on = 2;
#ifdef OGL
g3_draw_poly(nv,pointlist);
#else
g3_draw_tmap(nv,pointlist, uvl_copy, dyn_light, *bm);
#endif
Lighting_on = save_lighting;
if (gr_ugpixel(grd_curcanv->cv_bitmap,_search_x,_search_y) == 1) {
found_seg = segnum;
found_obj = object_none;
found_side = sidenum;
found_face = facenum;
}
}
#else
(void)segnum;
(void)sidenum;
(void)facenum;
(void)nv;
(void)vp;
(void)tmap1;
(void)tmap2;
(void)uvl_copy;
#endif
}
template <std::size_t... N>
static inline void check_render_face(index_sequence<N...>, segnum_t segnum, int sidenum, unsigned facenum, const array<int, 4> &ovp, int tmap1, int tmap2, const array<uvl, 4> &uvlp, WALL_IS_DOORWAY_result_t wid_flags, const std::size_t nv)
{
const array<int, 4> vp{{ovp[N]...}};
const array<g3s_uvl, 4> uvl_copy{{
{uvlp[N].u, uvlp[N].v, uvlp[N].l}...
}};
render_face(segnum, sidenum, nv, vp, tmap1, tmap2, uvl_copy, wid_flags);
check_face(segnum, sidenum, facenum, nv, vp, tmap1, tmap2, uvl_copy);
}
template <std::size_t N0, std::size_t N1, std::size_t N2, std::size_t N3>
static inline void check_render_face(index_sequence<N0, N1, N2, N3> is, segnum_t segnum, int sidenum, unsigned facenum, const array<int, 4> &vp, int tmap1, int tmap2, const array<uvl, 4> &uvlp, WALL_IS_DOORWAY_result_t wid_flags)
{
check_render_face(is, segnum, sidenum, facenum, vp, tmap1, tmap2, uvlp, wid_flags, 4);
}
/* Avoid default constructing final element of uvl_copy; if any members
* are default constructed, gcc zero initializes all members.
*/
template <std::size_t N0, std::size_t N1, std::size_t N2>
static inline void check_render_face(index_sequence<N0, N1, N2>, segnum_t segnum, int sidenum, unsigned facenum, const array<int, 4> &vp, int tmap1, int tmap2, const array<uvl, 4> &uvlp, WALL_IS_DOORWAY_result_t wid_flags)
{
check_render_face(index_sequence<N0, N1, N2, 3>(), segnum, sidenum, facenum, vp, tmap1, tmap2, uvlp, wid_flags, 3);
}
static const fix Tulate_min_dot = (F1_0/4);
//--unused-- fix Tulate_min_ratio = (2*F1_0);
static const fix Min_n0_n1_dot = (F1_0*15/16);
// -----------------------------------------------------------------------------------
// Render a side.
// Check for normal facing. If so, render faces on side dictated by sidep->type.
static void render_side(const vcsegptridx_t segp, int sidenum)
{
auto sidep = &segp->sides[sidenum];
fix min_dot, max_dot;
vms_vector normals[2];
auto wid_flags = WALL_IS_DOORWAY(segp,sidenum);
if (!(wid_flags & WID_RENDER_FLAG)) //if (WALL_IS_DOORWAY(segp, sidenum) == WID_NO_WALL)
return;
normals[0] = segp->sides[sidenum].normals[0];
normals[1] = segp->sides[sidenum].normals[1];
const auto vertnum_list = get_side_verts(segp,sidenum);
// Regardless of whether this side is comprised of a single quad, or two triangles, we need to know one normal, so
// deal with it, get the dot product.
const unsigned which_vertnum =
#if defined(DXX_BUILD_DESCENT_II)
/* Silly, but consistent with how it was at release */
(sidep->get_type() == SIDE_IS_QUAD) ? 0 :
#endif
(sidep->get_type() == SIDE_IS_TRI_13)
? 1
: 0;
const auto tvec = vm_vec_normalized_quick(vm_vec_sub(Viewer_eye, Vertices[vertnum_list[which_vertnum]]));
const auto v_dot_n0 = vm_vec_dot(tvec, normals[0]);
// ========== Mark: Here is the change...beginning here: ==========
index_sequence<0, 1, 2, 3> is_quad;
if (sidep->get_type() == SIDE_IS_QUAD) {
if (v_dot_n0 >= 0) {
check_render_face(is_quad, segp, sidenum, 0, vertnum_list, sidep->tmap_num, sidep->tmap_num2, sidep->uvls, wid_flags);
}
} else {
// ========== Mark: The change ends here. ==========
// Although this side has been triangulated, because it is not planar, see if it is acceptable
// to render it as a single quadrilateral. This is a function of how far away the viewer is, how non-planar
// the face is, how normal to the surfaces the view is.
// Now, if both dot products are close to 1.0, then render two triangles as a single quad.
const auto v_dot_n1 = vm_vec_dot(tvec, normals[1]);
if (v_dot_n0 < v_dot_n1) {
min_dot = v_dot_n0;
max_dot = v_dot_n1;
} else {
min_dot = v_dot_n1;
max_dot = v_dot_n0;
}
// Determine whether to detriangulate side: (speed hack, assumes Tulate_min_ratio == F1_0*2, should fixmul(min_dot, Tulate_min_ratio))
if (DETRIANGULATION && ((min_dot+F1_0/256 > max_dot) || ((Viewer->segnum != segp) && (min_dot > Tulate_min_dot) && (max_dot < min_dot*2)))) {
fix n0_dot_n1;
// The other detriangulation code doesn't deal well with badly non-planar sides.
n0_dot_n1 = vm_vec_dot(normals[0], normals[1]);
if (n0_dot_n1 < Min_n0_n1_dot)
goto im_so_ashamed;
check_render_face(is_quad, segp, sidenum, 0, vertnum_list, sidep->tmap_num, sidep->tmap_num2, sidep->uvls, wid_flags);
} else {
im_so_ashamed: ;
if (sidep->get_type() == SIDE_IS_TRI_02) {
if (v_dot_n0 >= 0) {
check_render_face(index_sequence<0, 1, 2>(), segp, sidenum, 0, vertnum_list, sidep->tmap_num, sidep->tmap_num2, sidep->uvls, wid_flags);
}
if (v_dot_n1 >= 0) {
// want to render from vertices 0, 2, 3 on side
check_render_face(index_sequence<0, 2, 3>(), segp, sidenum, 1, vertnum_list, sidep->tmap_num, sidep->tmap_num2, sidep->uvls, wid_flags);
}
} else if (sidep->get_type() == SIDE_IS_TRI_13) {
if (v_dot_n1 >= 0) {
// rendering 1,2,3, so just skip 0
check_render_face(index_sequence<1, 2, 3>(), segp, sidenum, 1, vertnum_list, sidep->tmap_num, sidep->tmap_num2, sidep->uvls, wid_flags);
}
if (v_dot_n0 >= 0) {
// want to render from vertices 0,1,3
check_render_face(index_sequence<0, 1, 3>(), segp, sidenum, 0, vertnum_list, sidep->tmap_num, sidep->tmap_num2, sidep->uvls, wid_flags);
}
} else
throw side::illegal_type(segp, sidep);
}
}
}
#ifdef EDITOR
static void render_object_search(const vobjptridx_t obj)
{
int changed=0;
//note that we draw each pixel object twice, since we cannot control
//what color the object draws in, so we try color 0, then color 1,
//in case the object itself is rendering color 0
gr_setcolor(0); //set our search pixel to color zero
#ifdef OGL
ogl_end_frame();
// For OpenGL we use gr_rect instead of gr_pixel,
// because in some implementations (like my Macbook Pro 5,1)
// point smoothing can't be turned off.
// Point smoothing would change the pixel to dark grey, but it MUST be black.
// Making a 3x3 rectangle wouldn't matter
// (but it only seems to draw a single pixel anyway)
gr_rect(_search_x - 1, _search_y - 1, _search_x + 1, _search_y + 1);
ogl_start_frame();
#else
gr_pixel(_search_x,_search_y);
#endif
render_object(obj);
if (gr_ugpixel(grd_curcanv->cv_bitmap,_search_x,_search_y) != 0)
changed=1;
gr_setcolor(1);
#ifdef OGL
ogl_end_frame();
gr_rect(_search_x - 1, _search_y - 1, _search_x + 1, _search_y + 1);
ogl_start_frame();
#else
gr_pixel(_search_x,_search_y);
#endif
render_object(obj);
if (gr_ugpixel(grd_curcanv->cv_bitmap,_search_x,_search_y) != 1)
changed=1;
if (changed) {
if (obj->segnum != segment_none)
Cursegp = segptridx(obj->segnum);
found_seg = segment_none;
found_obj = obj;
}
}
#endif
static void do_render_object(const vobjptridx_t obj, window_rendered_data &window)
{
#ifdef EDITOR
int save_3d_outline=0;
#endif
int count = 0;
#ifndef NDEBUG
if (object_rendered[obj]) { //already rendered this...
Int3(); //get Matt!!!
return;
}
object_rendered[obj] = true;
#endif
#if defined(DXX_BUILD_DESCENT_II)
if (Newdemo_state==ND_STATE_PLAYBACK)
{
if ((DemoDoingLeft==6 || DemoDoingRight==6) && obj->type==OBJ_PLAYER)
{
// A nice fat hack: keeps the player ship from showing up in the
// small extra view when guiding a missile in the big window
return;
}
}
#endif
// Added by MK on 09/07/94 (at about 5:28 pm, CDT, on a beautiful, sunny late summer day!) so
// that the guided missile system will know what objects to look at.
// I didn't know we had guided missiles before the release of D1. --MK
if ((obj->type == OBJ_ROBOT) || (obj->type == OBJ_PLAYER)) {
window.rendered_robots.emplace_back(obj);
}
if ((count++ > MAX_OBJECTS) || (obj->next == obj)) {
Int3(); // infinite loop detected
obj->next = object_none; // won't this clean things up?
return; // get out of this infinite loop!
}
//g3_draw_object(obj->class_id,&obj->pos,&obj->orient,obj->size);
//check for editor object
#ifdef EDITOR
if (EditorWindow && obj==Cur_object_index) {
save_3d_outline = g3d_interp_outline;
g3d_interp_outline=1;
}
#endif
#ifdef EDITOR
if (_search_mode)
render_object_search(obj);
else
#endif
//NOTE LINK TO ABOVE
render_object(obj);
for (objnum_t n=obj->attached_obj; n != object_none; n = Objects[n].ctype.expl_info.next_attach) {
const auto o = vobjptridx(n);
Assert(o->type == OBJ_FIREBALL);
Assert(o->control_type == CT_EXPLOSION);
Assert(o->flags & OF_ATTACHED);
render_object(o);
}
#ifdef EDITOR
if (EditorWindow && obj==Cur_object_index)
g3d_interp_outline = save_3d_outline;
#endif
}
//increment counter for checking if points rotated
//This must be called at the start of the frame if rotate_list() will be used
void render_start_frame()
{
if (s_current_generation == std::numeric_limits<decltype(s_current_generation)>::max())
{
Segment_points = {};
s_current_generation = 0;
}
++ s_current_generation;
}
//Given a lit of point numbers, rotate any that haven't been rotated this frame
g3s_codes rotate_list(std::size_t nv,const int *pointnumlist)
{
g3s_codes cc;
range_for (const auto pnum, unchecked_partial_range(pointnumlist, nv))
{
auto &pnt = Segment_points[pnum];
if (pnt.p3_last_generation != s_current_generation)
{
pnt.p3_last_generation = s_current_generation;
if (cheats.acid)
{
float f = (float) timer_query() / F1_0;
vms_vector tmpv = Vertices[pnum];
tmpv.x += fl2f(sinf(f * 2.0f + f2fl(tmpv.x)));
tmpv.y += fl2f(sinf(f * 3.0f + f2fl(tmpv.y)));
tmpv.z += fl2f(sinf(f * 5.0f + f2fl(tmpv.z)));
g3_rotate_point(pnt,tmpv);
}
else
g3_rotate_point(pnt,Vertices[pnum]);
}
cc.uand &= pnt.p3_codes;
cc.uor |= pnt.p3_codes;
}
return cc;
}
//Given a lit of point numbers, project any that haven't been projected
static void project_list(array<int, 8> &pointnumlist)
{
range_for (const auto pnum, pointnumlist)
{
if (!(Segment_points[pnum].p3_flags & PF_PROJECTED))
g3_project_point(Segment_points[pnum]);
}
}
// -----------------------------------------------------------------------------------
#if !defined(OGL)
static void render_segment(const vcsegptridx_t seg)
{
int sn;
g3s_codes cc=rotate_list(seg->verts);
if (! cc.uand) { //all off screen?
#if defined(DXX_BUILD_DESCENT_II)
if (Viewer->type!=OBJ_ROBOT)
#endif
Automap_visited[seg]=1;
for (sn=0; sn<MAX_SIDES_PER_SEGMENT; sn++)
render_side(seg, sn);
}
//draw any objects that happen to be in this segment
//sort objects!
//object_sort_segment_objects( seg );
}
#endif
// ----- This used to be called when Show_only_curside was set.
// ----- It is wholly and superiorly replaced by render_side.
// -- //render one side of one segment
// -- void render_seg_side(segment *seg,int _side)
// -- {
// -- g3s_codes cc;
// -- short vertnum_list[4];
// --
// -- cc=g3_rotate_list(8,&seg->verts);
// --
// -- if (! cc.uand) { //all off screen?
// -- int fn,pn,i;
// -- side *s;
// -- face *f;
// -- poly *p;
// --
// -- s=&seg->sides[_side];
// --
// -- for (f=s->faces,fn=s->num_faces;fn;fn--,f++)
// -- for (p=f->polys,pn=f->num_polys;pn;pn--,p++) {
// -- grs_bitmap *tmap;
// --
// -- for (i=0;i<p->num_vertices;i++) vertnum_list[i] = seg->verts[p->verts[i]];
// --
// -- if (p->tmap_num >= NumTextures) {
// -- Warning("Invalid tmap number %d, NumTextures=%d\n...Changing in poly structure to tmap 0",p->tmap_num,NumTextures);
// -- p->tmap_num = 0; //change it permanantly
// -- }
// --
// -- tmap = Textures[p->tmap_num];
// --
// -- g3_check_and_draw_tmap(p->num_vertices,vertnum_list,(g3s_uvl *) &p->uvls,tmap,&f->normal);
// --
// -- if (Outline_mode) draw_outline(p->num_vertices,vertnum_list);
// -- }
// -- }
// --
// -- }
#ifdef EDITOR
#ifndef NDEBUG
const fix CROSS_WIDTH = i2f(8);
const fix CROSS_HEIGHT = i2f(8);
//draw outline for curside
static void outline_seg_side(const vcsegptr_t seg,int _side,int edge,int vert)
{
g3s_codes cc=rotate_list(seg->verts);
if (! cc.uand) { //all off screen?
g3s_point *pnt;
//render curedge of curside of curseg in green
gr_setcolor(BM_XRGB(0,63,0));
g3_draw_line(Segment_points[seg->verts[Side_to_verts[_side][edge]]],Segment_points[seg->verts[Side_to_verts[_side][(edge+1)%4]]]);
//draw a little cross at the current vert
pnt = &Segment_points[seg->verts[Side_to_verts[_side][vert]]];
g3_project_point(*pnt); //make sure projected
// gr_setcolor(BM_XRGB(0,0,63));
// gr_line(pnt->p3_sx-CROSS_WIDTH,pnt->p3_sy,pnt->p3_sx+CROSS_WIDTH,pnt->p3_sy);
// gr_line(pnt->p3_sx,pnt->p3_sy-CROSS_HEIGHT,pnt->p3_sx,pnt->p3_sy+CROSS_HEIGHT);
gr_line(pnt->p3_sx-CROSS_WIDTH,pnt->p3_sy,pnt->p3_sx,pnt->p3_sy-CROSS_HEIGHT);
gr_line(pnt->p3_sx,pnt->p3_sy-CROSS_HEIGHT,pnt->p3_sx+CROSS_WIDTH,pnt->p3_sy);
gr_line(pnt->p3_sx+CROSS_WIDTH,pnt->p3_sy,pnt->p3_sx,pnt->p3_sy+CROSS_HEIGHT);
gr_line(pnt->p3_sx,pnt->p3_sy+CROSS_HEIGHT,pnt->p3_sx-CROSS_WIDTH,pnt->p3_sy);
}
}
#endif
#endif
#if 0 //this stuff could probably just be deleted
#define DEFAULT_PERSPECTIVE_DEPTH 6
int Perspective_depth=DEFAULT_PERSPECTIVE_DEPTH; //how many levels deep to render in perspective
int inc_perspective_depth(void)
{
return ++Perspective_depth;
}
int dec_perspective_depth(void)
{
return Perspective_depth==1?Perspective_depth:--Perspective_depth;
}
int reset_perspective_depth(void)
{
return Perspective_depth = DEFAULT_PERSPECTIVE_DEPTH;
}
#endif
static ubyte code_window_point(fix x,fix y,const rect &w)
{
ubyte code=0;
if (x <= w.left) code |= 1;
if (x >= w.right) code |= 2;
if (y <= w.top) code |= 4;
if (y >= w.bot) code |= 8;
return code;
}
#ifndef NDEBUG
char visited2[MAX_SEGMENTS];
#endif
namespace {
struct visited_twobit_array_t : visited_segment_multibit_array_t<2> {};
}
int lcnt_save,scnt_save;
//Given two sides of segment, tell the two verts which form the
//edge between them
typedef array<int_fast8_t, 2> se_array0;
typedef array<se_array0, 6> se_array1;
typedef array<se_array1, 6> se_array2;
static const se_array2 Two_sides_to_edge = {{
{{ {{edge_none,edge_none}}, {{3,7}}, {{edge_none,edge_none}}, {{2,6}}, {{6,7}}, {{2,3}} }},
{{ {{3,7}}, {{edge_none,edge_none}}, {{0,4}}, {{edge_none,edge_none}}, {{4,7}}, {{0,3}} }},
{{ {{edge_none,edge_none}}, {{0,4}}, {{edge_none,edge_none}}, {{1,5}}, {{4,5}}, {{0,1}} }},
{{ {{2,6}}, {{edge_none,edge_none}}, {{1,5}}, {{edge_none,edge_none}}, {{5,6}}, {{1,2}} }},
{{ {{6,7}}, {{4,7}}, {{4,5}}, {{5,6}}, {{edge_none,edge_none}}, {{edge_none,edge_none}} }},
{{ {{2,3}}, {{0,3}}, {{0,1}}, {{1,2}}, {{edge_none,edge_none}}, {{edge_none,edge_none}} }}
}};
//given an edge specified by two verts, give the two sides on that edge
typedef array<int_fast8_t, 2> es_array0;
typedef array<es_array0, 8> es_array1;
typedef array<es_array1, 8> es_array2;
static const es_array2 Edge_to_sides = {{
{{ {{side_none,side_none}}, {{2,5}}, {{side_none,side_none}}, {{1,5}}, {{1,2}}, {{side_none,side_none}}, {{side_none,side_none}}, {{side_none,side_none}} }},
{{ {{2,5}}, {{side_none,side_none}}, {{3,5}}, {{side_none,side_none}}, {{side_none,side_none}}, {{2,3}}, {{side_none,side_none}}, {{side_none,side_none}} }},
{{ {{side_none,side_none}}, {{3,5}}, {{side_none,side_none}}, {{0,5}}, {{side_none,side_none}}, {{side_none,side_none}}, {{0,3}}, {{side_none,side_none}} }},
{{ {{1,5}}, {{side_none,side_none}}, {{0,5}}, {{side_none,side_none}}, {{side_none,side_none}}, {{side_none,side_none}}, {{side_none,side_none}}, {{0,1}} }},
{{ {{1,2}}, {{side_none,side_none}}, {{side_none,side_none}}, {{side_none,side_none}}, {{side_none,side_none}}, {{2,4}}, {{side_none,side_none}}, {{1,4}} }},
{{ {{side_none,side_none}}, {{2,3}}, {{side_none,side_none}}, {{side_none,side_none}}, {{2,4}}, {{side_none,side_none}}, {{3,4}}, {{side_none,side_none}} }},
{{ {{side_none,side_none}}, {{side_none,side_none}}, {{0,3}}, {{side_none,side_none}}, {{side_none,side_none}}, {{3,4}}, {{side_none,side_none}}, {{0,4}} }},
{{ {{side_none,side_none}}, {{side_none,side_none}}, {{side_none,side_none}}, {{0,1}}, {{1,4}}, {{side_none,side_none}}, {{0,4}}, {{side_none,side_none}} }},
}};
//@@//perform simple check on tables
//@@check_check()
//@@{
//@@ int i,j;
//@@
//@@ for (i=0;i<8;i++)
//@@ for (j=0;j<8;j++)
//@@ Assert(Edge_to_sides[i][j][0] == Edge_to_sides[j][i][0] &&
//@@ Edge_to_sides[i][j][1] == Edge_to_sides[j][i][1]);
//@@
//@@ for (i=0;i<6;i++)
//@@ for (j=0;j<6;j++)
//@@ Assert(Two_sides_to_edge[i][j][0] == Two_sides_to_edge[j][i][0] &&
//@@ Two_sides_to_edge[i][j][1] == Two_sides_to_edge[j][i][1]);
//@@
//@@
//@@}
//given an edge, tell what side is on that edge
__attribute_warn_unused_result
static int find_seg_side(const vcsegptr_t seg,const array<int, 2> &verts,unsigned notside)
{
if (notside >= MAX_SIDES_PER_SEGMENT)
throw std::logic_error("invalid notside");
int side0,side1;
int v0,v1;
//@@ check_check();
v0 = verts[0];
v1 = verts[1];
auto b = begin(seg->verts);
auto e = end(seg->verts);
auto iv0 = e;
auto iv1 = e;
for (auto i = b;;)
{
if (iv0 == e && *i == v0)
{
iv0 = i;
if (iv1 != e)
break;
}
if (iv1 == e && *i == v1)
{
iv1 = i;
if (iv0 != e)
break;
}
if (++i == e)
return side_none;
}
const auto &eptr = Edge_to_sides[std::distance(b, iv0)][std::distance(b, iv1)];
side0 = eptr[0];
side1 = eptr[1];
Assert(side0 != side_none && side1 != side_none);
if (side0 != notside) {
Assert(side1==notside);
return side0;
}
else {
Assert(side0==notside);
return side1;
}
}
__attribute_warn_unused_result
static bool compare_child(const vcsegptridx_t seg, const vcsegptridx_t cseg, const sidenum_fast_t edgeside)
{
const auto &cside = cseg->sides[edgeside];
const auto &sv = Side_to_verts[edgeside][cside.get_type() == SIDE_IS_TRI_13 ? 1 : 0];
const auto &temp = vm_vec_sub(Viewer_eye, Vertices[seg->verts[sv]]);
const auto &cnormal = cseg->sides[edgeside].normals;
return vm_vec_dot(cnormal[0], temp) < 0 || vm_vec_dot(cnormal[1], temp) < 0;
}
//see if the order matters for these two children.
//returns 0 if order doesn't matter, 1 if c0 before c1, -1 if c1 before c0
__attribute_warn_unused_result
static bool compare_children(const vcsegptridx_t seg, sidenum_fast_t s0, sidenum_fast_t s1)
{
Assert(s0 != side_none && s1 != side_none);
if (Side_opposite[s0] == s1)
return false;
//find normals of adjoining sides
const array<int, 2> edge_verts = {
{seg->verts[Two_sides_to_edge[s0][s1][0]], seg->verts[Two_sides_to_edge[s0][s1][1]]}
};
if (edge_verts[0] == -1 || edge_verts[1] == -1)
throw std::logic_error("invalid edge vert");
auto seg0 = vsegptridx(seg->children[s0]);
auto edgeside0 = find_seg_side(seg0,edge_verts,find_connect_side(seg,seg0));
if (edgeside0 == side_none)
return false;
auto r0 = compare_child(seg, seg0, edgeside0);
if (!r0)
return r0;
auto seg1 = vsegptridx(seg->children[s1]);
auto edgeside1 = find_seg_side(seg1,edge_verts,find_connect_side(seg,seg1));
if (edgeside1 == side_none)
return false;
return !compare_child(seg, seg1, edgeside1);
}
//short the children of segment to render in the correct order
//returns non-zero if swaps were made
typedef array<sidenum_fast_t, MAX_SIDES_PER_SEGMENT> sort_child_array_t;
static void sort_seg_children(const vcsegptridx_t seg, const partial_range_t<sort_child_array_t::iterator> &r)
{
//for each child, compare with other children and see if order matters
//if order matters, fix if wrong
auto predicate = [seg](sidenum_fast_t a, sidenum_fast_t b)
{
return compare_children(seg, a, b);
};
std::sort(r.begin(), r.end(), predicate);
}
static void add_obj_to_seglist(render_state_t &rstate, objnum_t objnum, segnum_t segnum)
{
auto p = rstate.render_seg_map.emplace(segnum, render_state_t::per_segment_state_t{});
auto &o = p.first->second.objects;
if (p.second)
o.reserve(16);
o.emplace_back(render_state_t::per_segment_state_t::distant_object{objnum});
}
namespace {
class render_compare_context_t
{
struct element
{
fix64 dist_squared;
#if defined(DXX_BUILD_DESCENT_II)
object *objp;
#endif
};
typedef array<element, MAX_OBJECTS> array_t;
array_t a;
public:
array_t::reference operator[](std::size_t i) { return a[i]; }
array_t::const_reference operator[](std::size_t i) const { return a[i]; }
render_compare_context_t(const render_state_t::per_segment_state_t &segstate)
{
range_for (const auto t, segstate.objects)
{
auto objp = &Objects[t.objnum];
auto &e = (*this)[t.objnum];
#if defined(DXX_BUILD_DESCENT_II)
e.objp = objp;
#endif
e.dist_squared = vm_vec_dist2(objp->pos, Viewer_eye);
}
}
};
}
//compare function for object sort.
static bool compare_func(const render_compare_context_t &c, const render_state_t::per_segment_state_t::distant_object &a,const render_state_t::per_segment_state_t::distant_object &b)
{
fix64 delta_dist_squared = c[a.objnum].dist_squared - c[b.objnum].dist_squared;
#if defined(DXX_BUILD_DESCENT_II)
const auto obj_a = c[a.objnum].objp;
const auto obj_b = c[b.objnum].objp;
auto abs_delta_dist_squared = std::abs(delta_dist_squared);
fix combined_size = obj_a->size + obj_b->size;
/*
* First check without squaring. If true, the square can be
* skipped.
*/
if (abs_delta_dist_squared < combined_size || abs_delta_dist_squared < (combined_size * combined_size))
{ //same position
//these two objects are in the same position. see if one is a fireball
//or laser or something that should plot on top. Don't do this for
//the afterburner blobs, though.
if (obj_a->type == OBJ_WEAPON || (obj_a->type == OBJ_FIREBALL && obj_a->id != VCLIP_AFTERBURNER_BLOB))
{
if (!(obj_b->type == OBJ_WEAPON || obj_b->type == OBJ_FIREBALL))
return true; //a is weapon, b is not, so say a is closer
//both are weapons
}
else
{
if (obj_b->type == OBJ_WEAPON || (obj_b->type == OBJ_FIREBALL && obj_b->id != VCLIP_AFTERBURNER_BLOB))
return false; //b is weapon, a is not, so say a is farther
}
//no special case, fall through to normal return
}
#endif
return delta_dist_squared < 0; //return distance
}
static void sort_segment_object_list(render_state_t::per_segment_state_t &segstate)
{
render_compare_context_t context(segstate);
typedef render_state_t::per_segment_state_t::distant_object distant_object;
const auto predicate = [&context](const distant_object &a, const distant_object &b) { return compare_func(context, a, b); };
auto &v = segstate.objects;
std::sort(v.begin(), v.end(), predicate);
}
static void build_object_lists(render_state_t &rstate)
{
int nn;
for (nn=0;nn < rstate.N_render_segs;nn++) {
auto segnum = rstate.Render_list[nn];
if (segnum != segment_none) {
range_for (const auto obj, objects_in(Segments[segnum]))
{
int list_pos;
if (obj->type == OBJ_NONE)
continue;
Assert( obj->segnum == segnum );
if (obj->flags & OF_ATTACHED)
continue; //ignore this object
auto new_segnum = segnum;
list_pos = nn;
#if defined(DXX_BUILD_DESCENT_I)
int did_migrate;
if (obj->type != OBJ_CNTRLCEN) //don't migrate controlcen
#elif defined(DXX_BUILD_DESCENT_II)
const int did_migrate = 0;
if (obj->type != OBJ_CNTRLCEN && !(obj->type==OBJ_ROBOT && get_robot_id(obj)==65)) //don't migrate controlcen
#endif
do {
segmasks m;
#if defined(DXX_BUILD_DESCENT_I)
did_migrate = 0;
#endif
m = get_seg_masks(obj->pos, vcsegptr(new_segnum), obj->size);
if (m.sidemask) {
int sn,sf;
for (sn=0,sf=1;sn<6;sn++,sf<<=1)
if (m.sidemask & sf) {
#if defined(DXX_BUILD_DESCENT_I)
const auto &&seg = vcsegptr(obj->segnum);
#elif defined(DXX_BUILD_DESCENT_II)
const auto &&seg = vcsegptr(new_segnum);
#endif
if (WALL_IS_DOORWAY(seg,sn) & WID_FLY_FLAG) { //can explosion migrate through
int child = seg->children[sn];
int checknp;
for (checknp=list_pos;checknp--;)
if (rstate.Render_list[checknp] == child) {
new_segnum = child;
list_pos = checknp;
#if defined(DXX_BUILD_DESCENT_I)
did_migrate = 1;
#endif
}
}
}
}
} while (did_migrate);
add_obj_to_seglist(rstate, obj, new_segnum);
}
}
}
//now that there's a list for each segment, sort the items in those lists
range_for (const auto segnum, partial_range(rstate.Render_list, rstate.N_render_segs))
{
if (segnum != segment_none) {
sort_segment_object_list(rstate.render_seg_map[segnum]);
}
}
}
//--unused-- int Total_num_tmaps_drawn=0;
int Rear_view=0;
#ifdef JOHN_ZOOM
fix Zoom_factor=F1_0;
#endif
//renders onto current canvas
void render_frame(fix eye_offset, window_rendered_data &window)
{
if (Endlevel_sequence) {
render_endlevel_frame(eye_offset);
return;
}
if ( Newdemo_state == ND_STATE_RECORDING && eye_offset >= 0 ) {
if (RenderingType==0)
newdemo_record_start_frame(FrameTime );
if (RenderingType!=255)
newdemo_record_viewer_object(vobjptridx(Viewer));
}
//Here:
start_lighting_frame(Viewer); //this is for ugly light-smoothing hack
g3_start_frame();
Viewer_eye = Viewer->pos;
// if (Viewer->type == OBJ_PLAYER && (PlayerCfg.CockpitMode[1]!=CM_REAR_VIEW))
// vm_vec_scale_add2(&Viewer_eye,&Viewer->orient.fvec,(Viewer->size*3)/4);
if (eye_offset) {
vm_vec_scale_add2(Viewer_eye,Viewer->orient.rvec,eye_offset);
}
#ifdef EDITOR
if (EditorWindow)
Viewer_eye = Viewer->pos;
#endif
auto start_seg_num = find_point_seg(Viewer_eye,Viewer->segnum);
if (start_seg_num==segment_none)
start_seg_num = Viewer->segnum;
if (Rear_view && (Viewer==ConsoleObject)) {
vms_angvec Player_head_angles;
Player_head_angles.p = Player_head_angles.b = 0;
Player_head_angles.h = 0x7fff;
const auto &&headm = vm_angles_2_matrix(Player_head_angles);
const auto viewm = vm_matrix_x_matrix(Viewer->orient,headm);
g3_set_view_matrix(Viewer_eye,viewm,Render_zoom);
} else {
#ifdef JOHN_ZOOM
if (keyd_pressed[KEY_RSHIFT] ) {
Zoom_factor += FrameTime*4;
if (Zoom_factor > F1_0*5 ) Zoom_factor=F1_0*5;
} else {
Zoom_factor -= FrameTime*4;
if (Zoom_factor < F1_0 ) Zoom_factor = F1_0;
}
g3_set_view_matrix(Viewer_eye,Viewer->orient,fixdiv(Render_zoom,Zoom_factor));
#else
g3_set_view_matrix(Viewer_eye,Viewer->orient,Render_zoom);
#endif
}
if (Clear_window == 1) {
if (Clear_window_color == -1)
Clear_window_color = BM_XRGB(0, 0, 0); //BM_XRGB(31, 15, 7);
gr_clear_canvas(Clear_window_color);
}
#if defined(DXX_BUILD_DESCENT_II)
#ifndef NDEBUG
if (Show_only_curside)
gr_clear_canvas(Clear_window_color);
#endif
#endif
render_mine(start_seg_num, eye_offset, window);
g3_end_frame();
//RenderingType=0;
// -- Moved from here by MK, 05/17/95, wrong if multiple renders/frame! FrameCount++; //we have rendered a frame
}
static unsigned first_terminal_seg;
#if defined(DXX_BUILD_DESCENT_II)
void update_rendered_data(window_rendered_data &window, const vobjptr_t viewer, int rear_view_flag)
{
window.time = timer_query();
window.viewer = viewer;
window.rear_view = rear_view_flag;
}
#endif
//build a list of segments to be rendered
//fills in Render_list & N_render_segs
static void build_segment_list(render_state_t &rstate, visited_twobit_array_t &visited, short start_seg_num)
{
int lcnt,scnt,ecnt;
int l;
rstate.render_pos.fill(-1);
#ifndef NDEBUG
memset(visited2, 0, sizeof(visited2[0])*(Highest_segment_index+1));
#endif
lcnt = scnt = 0;
rstate.Render_list[lcnt] = start_seg_num;
visited[start_seg_num]=1;
lcnt++;
ecnt = lcnt;
rstate.render_pos[start_seg_num] = 0;
{
auto &rsm_start_seg = rstate.render_seg_map[start_seg_num];
auto &rw = rsm_start_seg.render_window;
rw.left = rw.top = 0;
rw.right = grd_curcanv->cv_bitmap.bm_w-1;
rw.bot = grd_curcanv->cv_bitmap.bm_h-1;
}
//breadth-first renderer
//build list
for (l=0;l<Render_depth;l++) {
for (scnt=0;scnt < ecnt;scnt++) {
auto segnum = rstate.Render_list[scnt];
if (segnum == segment_none) continue;
auto &srsm = rstate.render_seg_map[segnum];
auto &processed = srsm.processed;
if (processed)
continue;
const auto &check_w = srsm.render_window;
processed = true;
auto seg = vsegptridx(segnum);
const auto r = rotate_list(seg->verts);
//look at all sides of this segment.
//tricky code to look at sides in correct order follows
sort_child_array_t child_list; //list of ordered sides to process
uint_fast32_t n_children = 0; //how many sides in child_list
for (uint_fast32_t c = 0;c < MAX_SIDES_PER_SEGMENT;c++) { //build list of sides
auto wid = WALL_IS_DOORWAY(seg, c);
if (wid & WID_RENDPAST_FLAG)
{
ubyte codes_and = r.uor;
if (codes_and & CC_BEHIND)
{
range_for (const auto i, Side_to_verts[c])
codes_and &= Segment_points[seg->verts[i]].p3_codes;
if (codes_and & CC_BEHIND) continue;
}
child_list[n_children++] = c;
}
}
if (!n_children)
continue;
//now order the sides in some magical way
const auto child_range = partial_range(child_list, n_children);
sort_seg_children(seg, child_range);
project_list(seg->verts);
range_for (const auto siden, child_range)
{
auto ch=seg->children[siden];
{
{
short min_x=32767,max_x=-32767,min_y=32767,max_y=-32767;
int no_proj_flag=0; //a point wasn't projected
uint8_t codes_and_3d = 0xff, codes_and_2d = codes_and_3d;
range_for (const auto i, Side_to_verts[siden])
{
g3s_point *pnt = &Segment_points[seg->verts[i]];
if (! (pnt->p3_flags&PF_PROJECTED)) {no_proj_flag=1; break;}
const int16_t _x = f2i(pnt->p3_sx), _y = f2i(pnt->p3_sy);
if (_x < min_x) min_x = _x;
if (_x > max_x) max_x = _x;
if (_y < min_y) min_y = _y;
if (_y > max_y) max_y = _y;
codes_and_3d &= pnt->p3_codes;
codes_and_2d &= code_window_point(_x,_y,check_w);
}
if (no_proj_flag || (!codes_and_3d && !codes_and_2d)) { //maybe add this segment
auto rp = rstate.render_pos[ch];
rect nw;
if (no_proj_flag)
nw = check_w;
else {
nw.left = max(check_w.left,min_x);
nw.right = min(check_w.right,max_x);
nw.top = max(check_w.top,min_y);
nw.bot = min(check_w.bot,max_y);
}
//see if this seg already visited, and if so, does current window
//expand the old window?
if (rp != -1) {
auto &old_w = rstate.render_seg_map[rstate.Render_list[rp]].render_window;
if (nw.left < old_w.left ||
nw.top < old_w.top ||
nw.right > old_w.right ||
nw.bot > old_w.bot) {
nw.left = min(nw.left, old_w.left);
nw.right = max(nw.right, old_w.right);
nw.top = min(nw.top, old_w.top);
nw.bot = max(nw.bot, old_w.bot);
{
//no_render_flag[lcnt] = 1;
rstate.render_seg_map[ch].processed = false; //force reprocess
rstate.Render_list[lcnt] = segment_none;
old_w = nw; //get updated window
goto no_add;
}
}
else goto no_add;
}
rstate.render_pos[ch] = lcnt;
rstate.Render_list[lcnt] = ch;
{
auto &chrsm = rstate.render_seg_map[ch];
chrsm.Seg_depth = l;
chrsm.render_window = nw;
}
lcnt++;
if (lcnt >= MAX_RENDER_SEGS) {goto done_list;}
visited[ch] = 1;
no_add:
;
}
}
}
}
}
scnt = ecnt;
ecnt = lcnt;
}
done_list:
lcnt_save = lcnt;
scnt_save = scnt;
first_terminal_seg = scnt;
rstate.N_render_segs = lcnt;
}
//renders onto current canvas
void render_mine(segnum_t start_seg_num,fix eye_offset, window_rendered_data &window)
{
using std::advance;
render_state_t rstate;
#ifndef NDEBUG
object_rendered = {};
#endif
//set up for rendering
render_start_frame();
visited_twobit_array_t visited;
#if defined(EDITOR)
if (Show_only_curside) {
rotate_list(Cursegp->verts);
render_side(Cursegp,Curside);
return;
}
#endif
#ifdef EDITOR
#if defined(DXX_BUILD_DESCENT_I)
if (_search_mode || eye_offset>0)
#elif defined(DXX_BUILD_DESCENT_II)
if (_search_mode)
#endif
{
//lcnt = lcnt_save;
//scnt = scnt_save;
}
else
#endif
//NOTE LINK TO ABOVE!!
build_segment_list(rstate, visited, start_seg_num); //fills in Render_list & N_render_segs
const auto render_range = partial_range(rstate.Render_list, rstate.N_render_segs);
const auto &&reversed_render_range = render_range.reversed();
//render away
#ifndef NDEBUG
#if defined(DXX_BUILD_DESCENT_I)
if (!(_search_mode || eye_offset>0))
#elif defined(DXX_BUILD_DESCENT_II)
if (!(_search_mode))
#endif
{
range_for (const auto segnum, render_range)
{
if (segnum != segment_none)
{
if (visited2[segnum])
Int3(); //get Matt
else
visited2[segnum] = 1;
}
}
}
#endif
if (!(_search_mode))
build_object_lists(rstate);
if (eye_offset<=0) // Do for left eye or zero.
set_dynamic_light(rstate);
if (reversed_render_range.empty())
/* Impossible, but later code has undefined behavior if this
* happens
*/
return;
if (!_search_mode && Clear_window == 2) {
if (first_terminal_seg < rstate.N_render_segs) {
if (Clear_window_color == -1)
Clear_window_color = BM_XRGB(0, 0, 0); //BM_XRGB(31, 15, 7);
gr_setcolor(Clear_window_color);
range_for (const auto segnum, partial_range(rstate.Render_list, first_terminal_seg, rstate.N_render_segs))
{
if (segnum != segment_none) {
const auto &rw = rstate.render_seg_map[segnum].render_window;
#ifndef NDEBUG
if (rw.left == -1 || rw.top == -1 || rw.right == -1 || rw.bot == -1)
Int3();
else
#endif
//NOTE LINK TO ABOVE!
gr_rect(rw.left, rw.top, rw.right, rw.bot);
}
}
}
}
#ifndef OGL
range_for (const auto segnum, reversed_render_range)
{
// Interpolation_method = 0;
auto &srsm = rstate.render_seg_map[segnum];
//if (!no_render_flag[nn])
if (segnum!=segment_none && (_search_mode || visited[segnum]!=3)) {
//set global render window vars
Current_seg_depth = srsm.Seg_depth;
{
const auto &rw = srsm.render_window;
Window_clip_left = rw.left;
Window_clip_top = rw.top;
Window_clip_right = rw.right;
Window_clip_bot = rw.bot;
}
render_segment(vcsegptridx(segnum));
visited[segnum]=3;
if (srsm.objects.empty())
continue;
{ //reset for objects
Window_clip_left = Window_clip_top = 0;
Window_clip_right = grd_curcanv->cv_bitmap.bm_w-1;
Window_clip_bot = grd_curcanv->cv_bitmap.bm_h-1;
}
{
//int n_expl_objs=0,expl_objs[5],i;
const auto save_linear_depth = exchange(Max_linear_depth, Max_linear_depth_objects);
range_for (auto &v, srsm.objects)
{
do_render_object(v.objnum, window); // note link to above else
}
Max_linear_depth = save_linear_depth;
}
}
}
#else
struct render_subrange : partial_range_t<std::reverse_iterator<segnum_t *>>
{
iterator *m_pbegin;
render_subrange(iterator i) :
partial_range_t<iterator>(i, std::prev(i)),
m_pbegin(&m_begin)
{
}
/* Prevent pointing m_pbegin at m_begin of different instance */
render_subrange(const render_subrange &rhs) = delete;
render_subrange &operator=(const render_subrange &rhs) = delete;
void record(iterator p, iterator &dummy)
{
*m_pbegin = m_end = p;
m_pbegin = &dummy;
}
};
struct render_ranges
{
typedef render_subrange::iterator iterator;
iterator dummy_write_only_begin;
render_subrange reversed_object_render_range, reversed_alpha_segment_render_range;
render_ranges(iterator e) :
reversed_object_render_range(e),
reversed_alpha_segment_render_range(e)
{
}
void record_object(iterator p)
{
reversed_object_render_range.record(p, dummy_write_only_begin);
}
void record_alpha(iterator p)
{
reversed_alpha_segment_render_range.record(p, dummy_write_only_begin);
}
};
/* Initially empty */
render_ranges rr{reversed_render_range.end()};
// Sorting elements for Alpha - 3 passes
// First Pass: render opaque level geometry + transculent level geometry with high Alpha-Test func
for (auto iter = reversed_render_range.begin(); iter != reversed_render_range.end(); ++iter)
{
const auto segnum = *iter;
auto &srsm = rstate.render_seg_map[segnum];
#if defined(DXX_BUILD_DESCENT_I)
if (segnum!=segment_none && (_search_mode || eye_offset>0 || visited[segnum]!=3))
#elif defined(DXX_BUILD_DESCENT_II)
if (segnum!=segment_none && (_search_mode || visited[segnum]!=3))
#endif
{
Current_seg_depth = srsm.Seg_depth;
if (!srsm.objects.empty())
rr.record_object(iter);
//set global render window vars
{
const auto &rw = srsm.render_window;
Window_clip_left = rw.left;
Window_clip_top = rw.top;
Window_clip_right = rw.right;
Window_clip_bot = rw.bot;
}
// render segment
{
const auto &&seg = vcsegptridx(segnum);
int sn;
Assert(segnum!=segment_none && segnum<=Highest_segment_index);
g3s_codes cc=rotate_list(seg->verts);
if (! cc.uand) { //all off screen?
if (Viewer->type!=OBJ_ROBOT)
Automap_visited[segnum]=1;
for (sn=0; sn<MAX_SIDES_PER_SEGMENT; sn++)
{
auto wid = WALL_IS_DOORWAY(seg, sn);
if (wid == WID_TRANSPARENT_WALL || wid == WID_TRANSILLUSORY_WALL
#if defined(DXX_BUILD_DESCENT_II)
|| (wid & WID_CLOAKED_FLAG)
#endif
)
{
glAlphaFunc(GL_GEQUAL,0.8);
render_side(seg, sn);
glAlphaFunc(GL_GEQUAL,0.02);
rr.record_alpha(iter);
}
else
render_side(seg, sn);
}
}
}
visited[segnum]=3;
}
}
visited.clear();
// Second Pass: Objects
advance(rr.reversed_object_render_range.m_end, 1);
range_for (const auto segnum, rr.reversed_object_render_range)
{
auto &srsm = rstate.render_seg_map[segnum];
if (srsm.objects.empty())
continue;
#if defined(DXX_BUILD_DESCENT_I)
if (segnum!=segment_none && (_search_mode || eye_offset>0 || visited[segnum]!=3))
#elif defined(DXX_BUILD_DESCENT_II)
if (segnum!=segment_none && (_search_mode || visited[segnum]!=3))
#endif
{
Current_seg_depth = srsm.Seg_depth;
//set global render window vars
visited[segnum]=3;
{ //reset for objects
Window_clip_left = Window_clip_top = 0;
Window_clip_right = grd_curcanv->cv_bitmap.bm_w-1;
Window_clip_bot = grd_curcanv->cv_bitmap.bm_h-1;
}
// render objects
{
range_for (auto &v, srsm.objects)
{
do_render_object(v.objnum, window); // note link to above else
}
}
}
}
visited.clear();
// Third Pass - Render Transculent level geometry with normal Alpha-Func
advance(rr.reversed_alpha_segment_render_range.m_end, 1);
range_for (const auto segnum, rr.reversed_alpha_segment_render_range)
{
auto &srsm = rstate.render_seg_map[segnum];
#if defined(DXX_BUILD_DESCENT_I)
if (segnum!=segment_none && (_search_mode || eye_offset>0 || visited[segnum]!=3))
#elif defined(DXX_BUILD_DESCENT_II)
if (segnum!=segment_none && (_search_mode || visited[segnum]!=3))
#endif
{
Current_seg_depth = srsm.Seg_depth;
//set global render window vars
{
const auto &rw = srsm.render_window;
Window_clip_left = rw.left;
Window_clip_top = rw.top;
Window_clip_right = rw.right;
Window_clip_bot = rw.bot;
}
// render segment
{
const auto &&seg = vcsegptridx(segnum);
int sn;
Assert(segnum!=segment_none && segnum<=Highest_segment_index);
g3s_codes cc=rotate_list(seg->verts);
if (! cc.uand) { //all off screen?
for (sn=0; sn<MAX_SIDES_PER_SEGMENT; sn++)
{
auto wid = WALL_IS_DOORWAY(seg, sn);
if (wid == WID_TRANSPARENT_WALL || wid == WID_TRANSILLUSORY_WALL
#if defined(DXX_BUILD_DESCENT_II)
|| (wid & WID_CLOAKED_FLAG)
#endif
)
render_side(seg, sn);
}
}
}
visited[segnum]=3;
}
}
#endif
// -- commented out by mk on 09/14/94...did i do a good thing?? object_render_targets();
#ifdef EDITOR
#ifndef NDEBUG
//draw curedge stuff
if (Outline_mode) outline_seg_side(Cursegp,Curside,Curedge,Curvert);
#endif
#endif
}
#ifdef EDITOR
//finds what segment is at a given x&y - seg,side,face are filled in
//works on last frame rendered. returns true if found
//if seg<0, then an object was found, and the object number is -seg-1
int find_seg_side_face(short x,short y,segnum_t &seg,objnum_t &obj,int &side,int &face,int &poly)
{
_search_mode = -1;
_search_x = x; _search_y = y;
found_seg = segment_none;
found_obj = object_none;
if (render_3d_in_big_window) {
gr_set_current_canvas(LargeView.ev_canv);
}
else {
gr_set_current_canvas(Canv_editor_game);
}
render_frame(0);
_search_mode = 0;
seg = found_seg;
obj = found_obj;
side = found_side;
face = found_face;
poly = found_poly;
return found_seg != segment_none || found_obj != object_none;
}
#endif