dxx-rebirth/similar/main/fvi.cpp

1289 lines
40 KiB
C++

/*
* Portions of this file are copyright Rebirth contributors and licensed as
* described in COPYING.txt.
* Portions of this file are copyright Parallax Software and licensed
* according to the Parallax license below.
* See COPYING.txt for license details.
THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX
SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO
END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A
ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS
IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS
SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE
FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE
CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS
AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE.
COPYRIGHT 1993-1999 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED.
*/
/*
*
* New home for find_vector_intersection()
*
*/
#include <algorithm>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "pstypes.h"
#include "u_mem.h"
#include "dxxerror.h"
#include "inferno.h"
#include "fvi.h"
#include "segment.h"
#include "object.h"
#include "wall.h"
#include "laser.h"
#include "gameseg.h"
#include "rle.h"
#include "robot.h"
#include "piggy.h"
#include "player.h"
#include "compiler-range_for.h"
#include "d_levelstate.h"
#include "segiter.h"
using std::min;
namespace {
//find the point on the specified plane where the line intersects
//returns true if point found, false if line parallel to plane
//new_pnt is the found point on the plane
//plane_pnt & plane_norm describe the plane
//p0 & p1 are the ends of the line
[[nodiscard]]
static int find_plane_line_intersection(vms_vector &new_pnt,const vms_vector &plane_pnt,const vms_vector &plane_norm,const vms_vector &p0,const vms_vector &p1,fix rad)
{
auto d = vm_vec_sub(p1,p0);
const fix den = -vm_vec_dot(plane_norm,d);
if (unlikely(!den)) // moving parallel to wall, so can't hit it
return 0;
const auto w = vm_vec_sub(p0,plane_pnt);
fix num = vm_vec_dot(plane_norm,w) - rad; //move point out by rad
//check for various bad values
if (den > 0 && (-num>>15) >= den) //will overflow (large negative)
num = (f1_0-f0_5)*den;
if (den > 0 && num > den) //frac greater than one
return 0;
if (den < 0 && num < den) //frac greater than one
return 0;
if (labs (num) / (f1_0 / 2) >= labs (den))
return 0;
vm_vec_scale2(d,num,den);
vm_vec_add(new_pnt,p0,d);
return 1;
}
struct vec2d {
fix i,j;
};
//intersection types
enum class intersection_type : uint8_t
{
None, //doesn't touch face at all
Face, //touches face
Edge, //touches edge of face
};
struct ij_pair
{
fix vms_vector::*largest_normal;
fix vms_vector::*i;
fix vms_vector::*j;
};
[[nodiscard]]
static ij_pair find_largest_normal(vms_vector t)
{
t.x = labs(t.x);
t.y = labs(t.y);
t.z = labs(t.z);
if (t.x > t.y)
{
if (t.x > t.z)
return {&vms_vector::x, &vms_vector::z, &vms_vector::y};
}
else if (t.y > t.z)
return {&vms_vector::y, &vms_vector::x, &vms_vector::z};
return {&vms_vector::z, &vms_vector::y, &vms_vector::x};
}
//see if a point in inside a face by projecting into 2d
[[nodiscard]]
static unsigned check_point_to_face(const vms_vector &checkp, const vms_vector &norm, const unsigned facenum, const unsigned nv, const vertnum_array_list_t &vertex_list)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
///
int edge;
uint edgemask;
fix check_i,check_j;
//now do 2d check to see if point is in side
//project polygon onto plane by finding largest component of normal
ij_pair ij = find_largest_normal(norm);
if (norm.*ij.largest_normal <= 0)
{
using std::swap;
swap(ij.i, ij.j);
}
//now do the 2d problem in the i,j plane
check_i = checkp.*ij.i;
check_j = checkp.*ij.j;
auto &vcvertptr = Vertices.vcptr;
for (edge=edgemask=0;edge<nv;edge++) {
vec2d edgevec,checkvec;
fix64 d;
auto &v0 = *vcvertptr(vertex_list[facenum * 3 + edge]);
auto &v1 = *vcvertptr(vertex_list[facenum * 3 + ((edge + 1) % nv)]);
edgevec.i = v1.*ij.i - v0.*ij.i;
edgevec.j = v1.*ij.j - v0.*ij.j;
checkvec.i = check_i - v0.*ij.i;
checkvec.j = check_j - v0.*ij.j;
d = fixmul64(checkvec.i,edgevec.j) - fixmul64(checkvec.j,edgevec.i);
if (d < 0) //we are outside of triangle
edgemask |= (1<<edge);
}
return edgemask;
}
//check if a sphere intersects a face
[[nodiscard]]
static intersection_type check_sphere_to_face(const vms_vector &pnt, const vms_vector &normal, const unsigned facenum, const unsigned nv, const fix rad, const vertnum_array_list_t &vertex_list)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
const auto checkp = pnt;
uint edgemask;
//now do 2d check to see if point is in side
edgemask = check_point_to_face(pnt, normal, facenum, nv, vertex_list);
//we've gone through all the sides, are we inside?
if (edgemask == 0)
return intersection_type::Face;
else {
vms_vector edgevec; //this time, real 3d vectors
vms_vector closest_point;
int edgenum;
//get verts for edge we're behind
for (edgenum=0;!(edgemask&1);(edgemask>>=1),edgenum++);
auto &vcvertptr = Vertices.vcptr;
auto &v0 = *vcvertptr(vertex_list[facenum * 3 + edgenum]);
auto &v1 = *vcvertptr(vertex_list[facenum * 3 + ((edgenum + 1) % nv)]);
//check if we are touching an edge or point
const auto checkvec = vm_vec_sub(checkp,v0);
const auto edgelen = vm_vec_normalized_dir(edgevec,v1,v0);
//find point dist from planes of ends of edge
const auto d = vm_vec_dot(edgevec,checkvec);
if (d < 0)
return intersection_type::None;
else if (d > edgelen)
return intersection_type::None;
if (d+rad < 0)
return intersection_type::None; //too far behind start point
if (d-rad > edgelen)
return intersection_type::None; //too far part end point
//find closest point on edge to check point
else {
vm_vec_scale_add(closest_point,v0,edgevec,d);
}
const auto dist = vm_vec_dist2(checkp,closest_point);
const fix64 rad64 = rad;
if (dist > vm_distance_squared{rad64 * rad64})
return intersection_type::None;
return intersection_type::Edge;
}
}
//returns true if line intersects with face. fills in newp with intersection
//point on plane, whether or not line intersects side
//facenum determines which of four possible faces we have
//note: the seg parm is temporary, until the face itself has a point field
[[nodiscard]]
static intersection_type check_line_to_face(vms_vector &newp, const vms_vector &p0, const vms_vector &p1, const shared_segment &seg, const sidenum_t side, const unsigned facenum, const unsigned nv, const fix rad)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
auto &s = seg.sides[side];
const vms_vector &norm = s.normals[facenum];
const auto &&[num_faces, vertex_list] = create_abs_vertex_lists(seg, s, side);
//use lowest point number
vertnum_t vertnum;
if (num_faces==2) {
vertnum = min(vertex_list[0],vertex_list[2]);
}
else {
auto b = begin(vertex_list);
vertnum = *std::min_element(b, std::next(b, 4));
}
auto &vcvertptr = Vertices.vcptr;
auto pli = find_plane_line_intersection(newp, vcvertptr(vertnum), norm, p0, p1, rad);
if (!pli)
return intersection_type::None;
auto checkp = newp;
//if rad != 0, project the point down onto the plane of the polygon
if (rad!=0)
vm_vec_scale_add2(checkp,norm,-rad);
return check_sphere_to_face(checkp, s.normals[facenum], facenum, nv, rad, vertex_list);
}
//returns the value of a determinant
[[nodiscard]]
static fix calc_det_value(const std::pair<vms_vector, vms_vector> &rfvec, const vms_vector &uvec)
{
return fixmul(rfvec.first.x, fixmul(uvec.y, rfvec.second.z)) -
fixmul(rfvec.first.x, fixmul(uvec.z, rfvec.second.y)) -
fixmul(rfvec.first.y, fixmul(uvec.x, rfvec.second.z)) +
fixmul(rfvec.first.y, fixmul(uvec.z, rfvec.second.x)) +
fixmul(rfvec.first.z, fixmul(uvec.x, rfvec.second.y)) -
fixmul(rfvec.first.z, fixmul(uvec.y, rfvec.second.x));
}
//computes the parameters of closest approach of two lines
//fill in two parameters, t0 & t1. returns 0 if lines are parallel, else 1
[[nodiscard]]
static std::optional<std::pair<fix, fix>> check_line_to_line(const vms_vector &p1, const vms_vector &v1, const vms_vector &p2, const vms_vector &v2)
{
std::pair<vms_vector, vms_vector> rfvec;
auto &detf = rfvec.second;
vm_vec_cross(detf, v1, v2);
const auto cross_mag2 = vm_vec_dot(detf, detf);
if (cross_mag2 == 0)
return std::nullopt; //lines are parallel
auto &detr = rfvec.first;
vm_vec_sub(detr, p2, p1);
const auto dv2 = calc_det_value(rfvec, v2);
const auto dv1 = calc_det_value(rfvec, v1);
const auto t1 = fixdiv(dv2, cross_mag2);
const auto t2 = fixdiv(dv1, cross_mag2);
return std::pair(t1, t2); //found point
}
//this version is for when the start and end positions both poke through
//the plane of a side. In this case, we must do checks against the edge
//of faces
[[nodiscard]]
static intersection_type special_check_line_to_face(vms_vector &newp, const vms_vector &p0, const vms_vector &p1, const shared_segment &seg, const sidenum_t side, const unsigned facenum, const unsigned nv, const fix rad)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
fix edge_t2 = 0, move_t2 = 0;
int edgenum;
auto &s = seg.sides[side];
//calc some basic stuff
const auto &&vertex_list = create_abs_vertex_lists(seg, s, side).second;
auto move_vec = vm_vec_sub(p1,p0);
//figure out which edge(s) to check against
unsigned edgemask = check_point_to_face(p0, s.normals[facenum], facenum, nv, vertex_list);
if (edgemask == 0)
return check_line_to_face(newp,p0,p1,seg,side,facenum,nv,rad);
for (edgenum=0;!(edgemask&1);edgemask>>=1,edgenum++);
auto &vcvertptr = Vertices.vcptr;
auto &edge_v0 = *vcvertptr(vertex_list[facenum * 3 + edgenum]);
auto &edge_v1 = *vcvertptr(vertex_list[facenum * 3 + ((edgenum + 1) % nv)]);
auto edge_vec = vm_vec_sub(edge_v1,edge_v0);
//is the start point already touching the edge?
//??
//first, find point of closest approach of vec & edge
const auto edge_len = vm_vec_normalize(edge_vec);
const auto move_len = vm_vec_normalize(move_vec);
const auto &cll = check_line_to_line(edge_v0,edge_vec,p0,move_vec);
if (!cll)
return intersection_type::None;
auto &&[edge_t, move_t] = *cll;
//make sure t values are in valid range
if (move_t<0 || move_t>move_len+rad)
return intersection_type::None;
if (move_t > move_len)
move_t2 = move_len;
else
move_t2 = move_t;
if (edge_t < 0) //saturate at points
edge_t2 = 0;
else
edge_t2 = edge_t;
if (edge_t2 > edge_len) //saturate at points
edge_t2 = edge_len;
//now, edge_t & move_t determine closest points. calculate the points.
const auto closest_point_edge = vm_vec_scale_add(edge_v0,edge_vec,edge_t2);
const auto closest_point_move = vm_vec_scale_add(p0,move_vec,move_t2);
//find dist between closest points
const auto closest_dist = vm_vec_dist2(closest_point_edge,closest_point_move);
//could we hit with this dist?
//note massive tolerance here
const vm_distance fudge_rad{(rad * 15) / 20};
if (closest_dist.d2 < fudge_rad || closest_dist < fudge_rad * fudge_rad) //we hit. figure out where
{
//now figure out where we hit
vm_vec_scale_add(newp,p0,move_vec,move_t-rad);
return intersection_type::Edge;
}
else
return intersection_type::None; //no hit
}
//maybe this routine should just return the distance and let the caller
//decide it it's close enough to hit
//determine if and where a vector intersects with a sphere
//vector defined by p0,p1
//returns dist if intersects, and fills in intp
//else returns 0
[[nodiscard]]
static vm_distance_squared check_vector_to_sphere_1(vms_vector &intp,const vms_vector &p0,const vms_vector &p1,const vms_vector &sphere_pos,fix sphere_rad)
{
vms_vector dn;
//this routine could be optimized if it's taking too much time!
const auto d = vm_vec_sub(p1,p0);
const auto w = vm_vec_sub(sphere_pos,p0);
const auto mag_d = vm_vec_copy_normalize(dn,d);
if (mag_d == 0) {
const auto int_dist = vm_vec_mag2(w);
intp = p0;
if (int_dist < sphere_rad)
return int_dist;
const fix64 sphere_rad64 = sphere_rad;
if (int_dist < vm_magnitude_squared{static_cast<uint64_t>(sphere_rad64 * sphere_rad64)})
return int_dist;
return vm_distance_squared::minimum_value();
}
const fix w_dist = vm_vec_dot(dn,w);
if (w_dist < 0) //moving away from object
return vm_distance_squared::minimum_value();
if (w_dist > mag_d+sphere_rad)
return vm_distance_squared::minimum_value(); //cannot hit
const auto closest_point = vm_vec_scale_add(p0,dn,w_dist);
const auto dist2 = vm_vec_dist2(closest_point,sphere_pos);
const fix64 sphere_rad64 = sphere_rad;
const vm_distance_squared sphere_rad_squared{sphere_rad64 * sphere_rad64};
if (dist2 < sphere_rad_squared)
{
const fix64 delta_squared = static_cast<fix64>(sphere_rad_squared) - static_cast<fix64>(dist2);
const fix delta = static_cast<fix>(delta_squared >> 16);
const auto shorten = fix_sqrt(delta);
const auto int_dist = w_dist-shorten;
if (int_dist > mag_d || int_dist < 0) //past one or the other end of vector, which means we're inside
{
//past one or the other end of vector, which means we're inside? WRONG! Either you're inside OR you didn't quite make it!
if (vm_vec_dist2(p0, sphere_pos) < sphere_rad_squared)
{
intp = p0; //don't move at all
return vm_distance_squared{static_cast<fix64>(1)}; // note that we do not calculate a valid collision point. This is up to collision handling.
} else {
return vm_distance_squared::minimum_value();
}
}
vm_vec_scale_add(intp,p0,dn,int_dist); //calc intersection point
return vm_distance_squared{static_cast<fix64>(int_dist) * int_dist};
}
else
return vm_distance_squared::minimum_value();
}
/*
//$$fix get_sphere_int_dist(vms_vector *w,fix dist,fix rad);
//$$
//$$#pragma aux get_sphere_int_dist parm [esi] [ebx] [ecx] value [eax] modify exact [eax ebx ecx edx] = \
//$$ "mov eax,ebx" \
//$$ "imul eax" \
//$$ \
//$$ "mov ebx,eax" \
//$$ "mov eax,ecx" \
//$$ "mov ecx,edx" \
//$$ \
//$$ "imul eax" \
//$$ \
//$$ "sub eax,ebx" \
//$$ "sbb edx,ecx" \
//$$ \
//$$ "call quad_sqrt" \
//$$ \
//$$ "push eax" \
//$$ \
//$$ "push ebx" \
//$$ "push ecx" \
//$$ \
//$$ "mov eax,[esi]" \
//$$ "imul eax" \
//$$ "mov ebx,eax" \
//$$ "mov ecx,edx" \
//$$ "mov eax,4[esi]" \
//$$ "imul eax" \
//$$ "add ebx,eax" \
//$$ "adc ecx,edx" \
//$$ "mov eax,8[esi]" \
//$$ "imul eax" \
//$$ "add eax,ebx" \
//$$ "adc edx,ecx" \
//$$ \
//$$ "pop ecx" \
//$$ "pop ebx" \
//$$ \
//$$ "sub eax,ebx" \
//$$ "sbb edx,ecx" \
//$$ \
//$$ "call quad_sqrt" \
//$$ \
//$$ "pop ebx" \
//$$ "sub eax,ebx";
//$$
//$$
//$$//determine if and where a vector intersects with a sphere
//$$//vector defined by p0,p1
//$$//returns dist if intersects, and fills in intp. if no intersect, return 0
//$$fix check_vector_to_sphere_2(vms_vector *intp,vms_vector *p0,vms_vector *p1,vms_vector *sphere_pos,fix sphere_rad)
//$${
//$$ vms_vector d,w,c;
//$$ fix mag_d,dist,mag_c,mag_w;
//$$ vms_vector wn,dn;
//$$
//$$ vm_vec_sub(&d,p1,p0);
//$$ vm_vec_sub(&w,sphere_pos,p0);
//$$
//$$ //wn = w; mag_w = vm_vec_normalize(&wn);
//$$ //dn = d; mag_d = vm_vec_normalize(&dn);
//$$
//$$ mag_w = vm_vec_copy_normalize(&wn,&w);
//$$ mag_d = vm_vec_copy_normalize(&dn,&d);
//$$
//$$ //vm_vec_cross(&c,&w,&d);
//$$ vm_vec_cross(&c,&wn,&dn);
//$$
//$$ mag_c = vm_vec_mag(&c);
//$$ //mag_d = vm_vec_mag(&d);
//$$
//$$ //dist = fixdiv(mag_c,mag_d);
//$$
//$$dist = fixmul(mag_c,mag_w);
//$$
//$$ if (dist < sphere_rad) { //we intersect. find point of intersection
//$$ fix int_dist; //length of vector to intersection point
//$$ fix k; //portion of p0p1 we want
//$$//@@ fix dist2,rad2,shorten,mag_w2;
//$$
//$$//@@ mag_w2 = vm_vec_dot(&w,&w); //the square of the magnitude
//$$//@@ //WHAT ABOUT OVERFLOW???
//$$//@@ dist2 = fixmul(dist,dist);
//$$//@@ rad2 = fixmul(sphere_rad,sphere_rad);
//$$//@@ shorten = fix_sqrt(rad2 - dist2);
//$$//@@ int_dist = fix_sqrt(mag_w2 - dist2) - shorten;
//$$
//$$ int_dist = get_sphere_int_dist(&w,dist,sphere_rad);
//$$
//$$if (labs(int_dist) > mag_d) //I don't know why this would happen
//$$ if (int_dist > 0)
//$$ k = f1_0;
//$$ else
//$$ k = -f1_0;
//$$else
//$$ k = fixdiv(int_dist,mag_d);
//$$
//$$// vm_vec_scale(&d,k); //vec from p0 to intersection point
//$$// vm_vec_add(intp,p0,&d); //intersection point
//$$ vm_vec_scale_add(intp,p0,&d,k); //calc new intersection point
//$$
//$$ return int_dist;
//$$ }
//$$ else
//$$ return 0; //no intersection
//$$}
*/
//determine if a vector intersects with an object
//if no intersects, returns 0, else fills in intp and returns dist
[[nodiscard]]
static vm_distance_squared check_vector_to_object(const d_robot_info_array *const Robot_info, vms_vector &intp, const vms_vector &p0, const vms_vector &p1, const fix rad, const object_base &obj, const object &otherobj)
{
fix size = obj.size;
if (obj.type == OBJ_ROBOT)
{
if ((*Robot_info)[get_robot_id(obj)].attack_type)
size = (size*3)/4;
}
//if obj is player, and bumping into other player or a weapon of another coop player, reduce radius
else if (obj.type == OBJ_PLAYER &&
(otherobj.type == OBJ_PLAYER ||
((Game_mode & GM_MULTI_COOP) && otherobj.type == OBJ_WEAPON && otherobj.ctype.laser_info.parent_type == OBJ_PLAYER)))
size = size/2;
return check_vector_to_sphere_1(intp, p0, p1, obj.pos, size+rad);
}
#define MAX_SEGS_VISITED 100
struct fvi_segment_visit_count_t
{
unsigned count = 0;
};
struct fvi_segments_visited_t : public fvi_segment_visit_count_t, public visited_segment_bitarray_t
{
};
}
namespace dsx {
namespace {
static fvi_hit_type fvi_sub(const fvi_query &, vms_vector &intp, segnum_t &ints, const vcsegptridx_t startseg, fix rad, fvi_info::segment_array_t &seglist, segnum_t entry_seg, fvi_segments_visited_t &visited, sidenum_t &fvi_hit_side, icsegidx_t &fvi_hit_side_seg, unsigned &fvi_nest_count, icsegidx_t &fvi_hit_pt_seg, const vms_vector *&wall_norm, icobjidx_t &fvi_hit_object);
}
//What the hell is fvi_hit_seg for???
//Find out if a vector intersects with anything.
//Fills in hit_data, an fvi_info structure (see header file).
//Parms:
// p0 & startseg describe the start of the vector
// p1 the end of the vector
// rad the radius of the cylinder
// thisobjnum used to prevent an object with colliding with itself
// ingore_obj ignore collisions with this object
// check_obj_flag determines whether collisions with objects are checked
//Returns the hit_data->hit_type
fvi_hit_type find_vector_intersection(const fvi_query fq, const segnum_t startseg, const fix rad, fvi_info &hit_data)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
segnum_t hit_seg2;
vms_vector hit_pnt;
icobjidx_t fvi_hit_object = object_none; // object number of object hit in last find_vector_intersection call.
//check to make sure start point is in seg its supposed to be in
//Assert(check_point_in_seg(p0,startseg,0).centermask==0); //start point not in seg
// invalid segnum, so say there is no hit.
if (startseg > Highest_segment_index)
{
assert(startseg <= Highest_segment_index);
hit_data.hit_pnt = fq.p0;
hit_data.hit_seg = segnum_t{};
hit_data.hit_object = 0;
hit_data.hit_side = side_none;
hit_data.hit_side_seg = segment_none;
return fvi_hit_type::BadP0;
}
auto &vcvertptr = Vertices.vcptr;
// Viewer is not in segment as claimed, so say there is no hit.
if (get_seg_masks(vcvertptr, fq.p0, vcsegptr(startseg), 0).centermask != sidemask_t{})
{
hit_data.hit_pnt = fq.p0;
hit_data.hit_seg = startseg;
hit_data.hit_side = side_none;
hit_data.hit_object = 0;
hit_data.hit_side_seg = segment_none;
return fvi_hit_type::BadP0;
}
fvi_segments_visited_t visited;
visited[startseg] = true;
sidenum_t fvi_hit_side;
icsegidx_t fvi_hit_side_seg = segment_none; // what seg the hitside is in
unsigned fvi_nest_count = 0;
icsegidx_t fvi_hit_pt_seg = segment_none; // what segment the hit point is in
hit_seg2 = segment_none;
const vms_vector *wall_norm = nullptr; //surface normal of hit wall
const auto hit_type = fvi_sub(fq, hit_pnt, hit_seg2, vcsegptridx(startseg), rad, hit_data.seglist, segment_exit, visited, fvi_hit_side, fvi_hit_side_seg, fvi_nest_count, fvi_hit_pt_seg, wall_norm, fvi_hit_object);
segnum_t hit_seg;
if (hit_seg2 != segment_none && get_seg_masks(vcvertptr, hit_pnt, vcsegptr(hit_seg2), 0).centermask == sidemask_t{})
hit_seg = hit_seg2;
else
hit_seg = find_point_seg(LevelSharedSegmentState, LevelUniqueSegmentState, hit_pnt, imsegptridx(startseg));
//MATT: TAKE OUT THIS HACK AND FIX THE BUGS!
if (hit_type == fvi_hit_type::Wall && hit_seg == segment_none)
if (fvi_hit_pt_seg != segment_none && get_seg_masks(vcvertptr, hit_pnt, vcsegptr(fvi_hit_pt_seg), 0).centermask == sidemask_t{})
hit_seg = fvi_hit_pt_seg;
if (hit_seg == segment_none) {
segnum_t new_hit_seg2=segment_none;
vms_vector new_hit_pnt;
//because of code that deal with object with non-zero radius has
//problems, try using zero radius and see if we hit a wall
const auto new_hit_type = fvi_sub(fq, new_hit_pnt, new_hit_seg2, vcsegptridx(startseg), 0, hit_data.seglist, segment_exit, visited, fvi_hit_side, fvi_hit_side_seg, fvi_nest_count, fvi_hit_pt_seg, wall_norm, fvi_hit_object);
(void)new_hit_type; // FIXME! This should become hit_type, right?
if (new_hit_seg2 != segment_none) {
hit_seg = new_hit_seg2;
hit_pnt = new_hit_pnt;
}
}
if (hit_seg!=segment_none && (fq.flags & FQ_GET_SEGLIST))
{
fvi_info::segment_array_t::iterator i = hit_data.seglist.find(hit_seg), e = hit_data.seglist.end();
/* If `hit_seg` is present in `seglist`, truncate `seglist` such that
* `seglist.back()` == `hit_seg`.
*
* Otherwise, `hit_seg` is not present in `seglist`. If there is space
* to add it, then add it.
*/
if (i != e)
hit_data.seglist.erase(++i);
else if (hit_data.seglist.size() < hit_data.seglist.max_size())
hit_data.seglist.emplace_back(hit_seg);
}
//I'm sorry to say that sometimes the seglist isn't correct. I did my
//best. Really.
//{ //verify hit list
//
// int i,ch;
//
// Assert(hit_data->seglist[0] == startseg);
//
// for (i=0;i<hit_data->n_segs-1;i++) {
// for (ch=0;ch<6;ch++)
// if (Segments[hit_data->seglist[i]].children[ch] == hit_data->seglist[i+1])
// break;
// Assert(ch<6);
// }
//
// Assert(hit_data->seglist[hit_data->n_segs-1] == hit_seg);
//}
//MATT: PUT THESE ASSERTS BACK IN AND FIX THE BUGS!
//!! Assert(hit_seg!=-1);
//!! Assert(!((hit_type==HIT_WALL) && (hit_seg == -1)));
//When this assert happens, get Matt. Matt: Look at hit_seg2 &
//fvi_hit_seg. At least one of these should be set. Why didn't
//find_new_seg() find something?
// Assert(fvi_hit_seg==-1 || fvi_hit_seg == hit_seg);
assert(!(hit_type == fvi_hit_type::Object && fvi_hit_object == object_none));
hit_data.hit_pnt = hit_pnt;
hit_data.hit_seg = hit_seg;
hit_data.hit_side = fvi_hit_side; //looks at global
hit_data.hit_side_seg = fvi_hit_side_seg; //looks at global
hit_data.hit_object = fvi_hit_object; //looks at global
if (wall_norm)
hit_data.hit_wallnorm = *wall_norm;
else
{
hit_data.hit_wallnorm = {};
DXX_MAKE_VAR_UNDEFINED(hit_data.hit_wallnorm);
}
// if(hit_seg != -1 && get_seg_masks(&hit_data->hit_pnt, hit_data->hit_seg, 0, __FILE__, __LINE__).centermask != 0)
// Int3();
return hit_type;
}
namespace {
[[nodiscard]]
static bool obj_in_list(const vcobjidx_t objnum, const std::pair<const vcobjidx_t *, const vcobjidx_t *> obj_list)
{
if (unlikely(!obj_list.first))
return false;
return std::find(obj_list.first, obj_list.second, objnum) != obj_list.second;
}
static int check_trans_wall(const vms_vector &pnt, vcsegptridx_t seg, sidenum_t sidenum, int facenum);
}
}
namespace {
static void append_segments(fvi_info::segment_array_t &dst, const fvi_info::segment_array_t &src)
{
/* Avoid overflow. Original code had n_segs < MAX_SEGS_VISITED-1,
* so leave an extra slot on min.
*/
const size_t scount = src.size(), dcount = dst.size(), count = std::min(scount, dst.max_size() - dcount - 1);
std::copy(src.begin(), src.begin() + count, std::back_inserter(dst));
}
}
namespace dsx {
namespace {
static fvi_hit_type fvi_sub(const fvi_query &fq, vms_vector &intp, segnum_t &ints, const vcsegptridx_t startseg, fix rad, fvi_info::segment_array_t &seglist, segnum_t entry_seg, fvi_segments_visited_t &visited, sidenum_t &fvi_hit_side, icsegidx_t &fvi_hit_side_seg, unsigned &fvi_nest_count, icsegidx_t &fvi_hit_pt_seg, const vms_vector *&wall_norm, icobjidx_t &fvi_hit_object)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
int startmask,endmask; //mask of faces
//@@int sidemask; //mask of sides - can be on back of face but not side
vms_vector closest_hit_point{}; //where we hit
auto closest_d = vm_distance_squared::maximum_value(); //distance to hit point
auto hit_type = fvi_hit_type::None; //what sort of hit
segnum_t hit_seg=segment_none;
segnum_t hit_none_seg=segment_none;
fvi_info::segment_array_t hit_none_seglist;
seglist.clear();
if (fq.flags & FQ_GET_SEGLIST)
seglist.emplace_back(startseg);
const unsigned cur_nest_level = fvi_nest_count;
fvi_nest_count++;
//first, see if vector hit any objects in this segment
if (const auto LevelUniqueObjectState = fq.LevelUniqueObjectState)
{
auto &Objects = LevelUniqueObjectState->Objects;
auto &vcobjptridx = Objects.vcptridx;
/* A caller which provides LevelUniqueObjectState must provide a valid object.
* Obtain a require_valid instance once, before the loop begins.
*/
const vcobjptridx_t thisobjnum = fq.thisobjnum;
const auto this_is_robot = thisobjnum->type == OBJ_ROBOT;
const auto &collision = CollisionResult[thisobjnum->type];
const auto Robot_info = fq.Robot_info;
const robot_info *const robptrthis = this_is_robot
? &(assert(Robot_info != nullptr), (*Robot_info)[get_robot_id(thisobjnum)])
: nullptr;
range_for (const auto objnum, objects_in(*startseg, vcobjptridx, vcsegptr))
{
if (thisobjnum == objnum)
continue;
if (objnum->flags & OF_SHOULD_BE_DEAD)
continue;
if (collision[objnum->type] == collision_result::ignore)
continue;
if (laser_are_related(objnum, thisobjnum))
continue;
if (obj_in_list(objnum, fq.ignore_obj_list))
continue;
int fudged_rad = rad;
#if defined(DXX_BUILD_DESCENT_II)
// If this is a powerup, don't do collision if flag FQ_IGNORE_POWERUPS is set
if (objnum->type == OBJ_POWERUP)
if (fq.flags & FQ_IGNORE_POWERUPS)
continue;
#endif
// If this is a robot:robot collision, only do it if both of them have attack_type != 0 (eg, green guy)
if (robptrthis && robptrthis->attack_type)
{
if (objnum->type == OBJ_ROBOT)
{
#if defined(DXX_BUILD_DESCENT_I)
if (!((*Robot_info)[get_robot_id(objnum)].attack_type))
#endif
// -- MK: 11/18/95, 4claws glomming together...this is easy. -- if (!(Robot_info[Objects[objnum].id].attack_type && Robot_info[Objects[thisobjnum].id].attack_type))
continue;
}
fudged_rad = (rad * 3) / 4;
}
//if obj is player, and bumping into other player or a weapon of another coop player, reduce radius
else if (fq.thisobjnum->type == OBJ_PLAYER &&
((objnum->type == OBJ_PLAYER) ||
((Game_mode&GM_MULTI_COOP) && objnum->type == OBJ_WEAPON && objnum->ctype.laser_info.parent_type == OBJ_PLAYER)))
fudged_rad = rad/2; //(rad*3)/4;
vms_vector hit_point;
const auto &&d = check_vector_to_object(Robot_info, hit_point, fq.p0, fq.p1, fudged_rad, objnum, thisobjnum);
if (d) //we have intersection
if (d < closest_d) {
fvi_hit_object = objnum;
Assert(fvi_hit_object!=object_none);
closest_d = d;
closest_hit_point = hit_point;
hit_type = fvi_hit_type::Object;
}
}
}
if (fq.thisobjnum != object_none && CollisionResult[fq.thisobjnum->type][OBJ_WALL] == collision_result::ignore)
rad = 0; //HACK - ignore when edges hit walls
//now, check segment walls
auto &vcvertptr = Vertices.vcptr;
startmask = get_seg_masks(vcvertptr, fq.p0, startseg, rad).facemask;
const auto &&masks = get_seg_masks(vcvertptr, fq.p1, startseg, rad); //on back of which faces?
endmask = masks.facemask;
//@@sidemask = masks.sidemask;
const auto centermask = masks.centermask; //where the center point is
if (centermask == sidemask_t{})
hit_none_seg = startseg;
if (endmask != 0) { //on the back of at least one face
int face;
//for each face we are on the back of, check if intersected
int bit = 1;
for (const auto side : MAX_SIDES_PER_SEGMENT)
{
if (endmask < bit)
break;
const unsigned nv = get_side_is_quad(startseg->shared_segment::sides[side]) ? 4 : 3;
// commented out by mk on 02/13/94:: if ((num_faces=seg->sides[side].num_faces)==0) num_faces=1;
for (face=0;face<2;face++,bit<<=1) {
if (endmask & bit) { //on the back of this face
intersection_type face_hit_type; //in what way did we hit the face?
const auto child_segnum = startseg->shared_segment::children[side];
if (child_segnum == entry_seg)
continue; //don't go back through entry side
//did we go through this wall/door?
vms_vector hit_point;
if (startmask & bit) //start was also though. Do extra check
face_hit_type = special_check_line_to_face(hit_point,
fq.p0, fq.p1, startseg, side,
face,
nv,rad);
else
//NOTE LINK TO ABOVE!!
face_hit_type = check_line_to_face(hit_point,
fq.p0, fq.p1, startseg, side,
face,
nv,rad);
if (face_hit_type != intersection_type::None)
{ //through this wall/door
auto &Walls = LevelUniqueWallSubsystemState.Walls;
auto &vcwallptr = Walls.vcptr;
auto wid_flag = WALL_IS_DOORWAY(GameBitmaps, Textures, vcwallptr, startseg, side);
//if what we have hit is a door, check the adjoining seg
if (fq.thisobjnum == get_local_player().objnum && cheats.ghostphysics)
{
if (IS_CHILD(child_segnum))
wid_flag |= WALL_IS_DOORWAY_FLAG::fly;
}
if ((wid_flag & WALL_IS_DOORWAY_FLAG::fly) ||
(
#if defined(DXX_BUILD_DESCENT_I)
(wid_flag == WID_TRANSPARENT_WALL) &&
#elif defined(DXX_BUILD_DESCENT_II)
((wid_flag & WALL_IS_DOORWAY_FLAG::render) && (wid_flag & WALL_IS_DOORWAY_FLAG::rendpast)) &&
#endif
((fq.flags & FQ_TRANSWALL) || (fq.flags & FQ_TRANSPOINT && check_trans_wall(hit_point,startseg,side,face))))) {
segnum_t newsegnum,sub_hit_seg;
vms_vector sub_hit_point;
const auto save_wall_norm = wall_norm;
auto save_hit_objnum = fvi_hit_object;
//do the check recursively on the next seg.
newsegnum = child_segnum;
if (auto &&v = visited[newsegnum]; !v) { //haven't visited here yet
v = true;
++ visited.count;
if (visited.count >= MAX_SEGS_VISITED)
goto quit_looking; //we've looked a long time, so give up
fvi_info::segment_array_t temp_seglist;
const auto sub_hit_type = fvi_sub(fq, sub_hit_point, sub_hit_seg, startseg.absolute_sibling(newsegnum), rad, temp_seglist, startseg, visited, fvi_hit_side, fvi_hit_side_seg, fvi_nest_count, fvi_hit_pt_seg, wall_norm, fvi_hit_object);
if (sub_hit_type != fvi_hit_type::None)
{
const auto d = vm_vec_dist2(sub_hit_point, fq.p0);
if (d < closest_d) {
closest_d = d;
closest_hit_point = sub_hit_point;
hit_type = sub_hit_type;
if (sub_hit_seg!=segment_none) hit_seg = sub_hit_seg;
//copy seglist
if (fq.flags & FQ_GET_SEGLIST) {
append_segments(seglist, temp_seglist);
}
}
else {
wall_norm = save_wall_norm; //global could be trashed
fvi_hit_object = save_hit_objnum;
}
}
else {
wall_norm = save_wall_norm; //global could be trashed
if (sub_hit_seg!=segment_none) hit_none_seg = sub_hit_seg;
//copy seglist
if (fq.flags & FQ_GET_SEGLIST)
hit_none_seglist = temp_seglist;
}
}
}
else { //a wall
//is this the closest hit?
const auto d = vm_vec_dist2(hit_point, fq.p0);
if (d < closest_d) {
closest_d = d;
closest_hit_point = hit_point;
hit_type = fvi_hit_type::Wall;
wall_norm = &startseg->shared_segment::sides[side].normals[face];
if (get_seg_masks(vcvertptr, hit_point, startseg, rad).centermask == sidemask_t{})
hit_seg = startseg; //hit in this segment
else
fvi_hit_pt_seg = startseg;
fvi_hit_side = side;
fvi_hit_side_seg = startseg;
}
}
}
}
}
}
}
// Assert(centermask==0 || hit_seg!=startseg);
// Assert(sidemask==0); //Error("Didn't find side we went though");
quit_looking:
;
if (hit_type == fvi_hit_type::None)
{ //didn't hit anything, return end point
intp = fq.p1;
ints = hit_none_seg;
//MATT: MUST FIX THIS!!!!
//Assert(!centermask);
if (hit_none_seg!=segment_none) { ///(centermask == 0)
if (fq.flags & FQ_GET_SEGLIST)
//copy seglist
append_segments(seglist, hit_none_seglist);
}
else
if (cur_nest_level!=0)
seglist.clear();
}
else {
intp = closest_hit_point;
if (hit_seg==segment_none)
if (fvi_hit_pt_seg != segment_none)
ints = fvi_hit_pt_seg;
else
ints = hit_none_seg;
else
ints = hit_seg;
}
assert(!(hit_type == fvi_hit_type::Object && fvi_hit_object == object_none));
return hit_type;
}
}
}
/*
//--unused-- //compute the magnitude of a 2d vector
//--unused-- fix mag2d(vec2d *v);
//--unused-- #pragma aux mag2d parm [esi] value [eax] modify exact [eax ebx ecx edx] = \
//--unused-- "mov eax,[esi]" \
//--unused-- "imul eax" \
//--unused-- "mov ebx,eax" \
//--unused-- "mov ecx,edx" \
//--unused-- "mov eax,4[esi]" \
//--unused-- "imul eax" \
//--unused-- "add eax,ebx" \
//--unused-- "adc edx,ecx" \
//--unused-- "call quad_sqrt";
*/
//--unused-- //returns mag
//--unused-- fix normalize_2d(vec2d *v)
//--unused-- {
//--unused-- fix mag;
//--unused--
//--unused-- mag = mag2d(v);
//--unused--
//--unused-- v->i = fixdiv(v->i,mag);
//--unused-- v->j = fixdiv(v->j,mag);
//--unused--
//--unused-- return mag;
//--unused-- }
#include "textures.h"
#include "texmerge.h"
#define cross(v0,v1) (fixmul((v0)->i,(v1)->j) - fixmul((v0)->j,(v1)->i))
//finds the uv coords of the given point on the given seg & side
//fills in u & v. if l is non-NULL fills it in also
namespace dsx {
fvi_hitpoint find_hitpoint_uv(const vms_vector &pnt, const cscusegment seg, const sidenum_t sidenum, const uint_fast32_t facenum)
{
auto &LevelSharedVertexState = LevelSharedSegmentState.get_vertex_state();
auto &Vertices = LevelSharedVertexState.get_vertices();
auto &side = seg.s.sides[sidenum];
fix k0,k1;
int i;
//do lasers pass through illusory walls?
//when do I return 0 & 1 for non-transparent walls?
const auto &&vn = create_all_vertnum_lists(seg, side, sidenum);
//now the hard work.
//1. find what plane to project this wall onto to make it a 2d case
const auto &normal_array = side.normals[facenum];
auto fmax = [](const vms_vector &v, fix vms_vector::*a, fix vms_vector::*b) {
return abs(v.*a) > abs(v.*b) ? a : b;
};
const auto biggest = fmax(normal_array, &vms_vector::z, fmax(normal_array, &vms_vector::y, &vms_vector::x));
const auto ii = (biggest == &vms_vector::x) ? &vms_vector::y : &vms_vector::x;
const auto jj = (biggest == &vms_vector::z) ? &vms_vector::y : &vms_vector::z;
//2. compute u,v of intersection point
//vec from 1 -> 0
auto &vcvertptr = Vertices.vcptr;
auto &vf1 = *vcvertptr(vn[facenum * 3 + 1].vertex);
const vec2d p1{vf1.*ii, vf1.*jj};
auto &vf0 = *vcvertptr(vn[facenum * 3 + 0].vertex);
const vec2d vec0{vf0.*ii - p1.i, vf0.*jj - p1.j};
//vec from 1 -> 2
auto &vf2 = *vcvertptr(vn[facenum * 3 + 2].vertex);
const vec2d vec1{vf2.*ii - p1.i, vf2.*jj - p1.j};
//vec from 1 -> checkpoint
const vec2d checkp{pnt.*ii, pnt.*jj};
//@@checkv.i = checkp.i - p1.i;
//@@checkv.j = checkp.j - p1.j;
k1 = -fixdiv(cross(&checkp,&vec0) + cross(&vec0,&p1),cross(&vec0,&vec1));
#if defined(DXX_BUILD_DESCENT_I)
if (vec0.i)
#elif defined(DXX_BUILD_DESCENT_II)
if (abs(vec0.i) > abs(vec0.j))
#endif
k0 = fixdiv(fixmul(-k1,vec1.i) + checkp.i - p1.i,vec0.i);
else
k0 = fixdiv(fixmul(-k1,vec1.j) + checkp.j - p1.j,vec0.j);
std::array<uvl, 3> uvls;
auto &uside = seg.u.sides[sidenum];
for (i=0;i<3;i++)
uvls[i] = uside.uvls[vn[facenum * 3 + i].vertnum];
auto p = [&uvls, k0, k1](fix uvl::*pmf) {
return uvls[1].*pmf + fixmul(k0,uvls[0].*pmf - uvls[1].*pmf) + fixmul(k1,uvls[2].*pmf - uvls[1].*pmf);
};
return {
p(&uvl::u),
p(&uvl::v)
};
}
namespace {
//check if a particular point on a wall is a transparent pixel
//returns 1 if can pass though the wall, else 0
int check_trans_wall(const vms_vector &pnt, const vcsegptridx_t seg, const sidenum_t sidenum, const int facenum)
{
auto &side = seg->unique_segment::sides[sidenum];
int bmx,bmy;
#if defined(DXX_BUILD_DESCENT_I)
#ifndef NDEBUG
auto &Walls = LevelUniqueWallSubsystemState.Walls;
auto &vcwallptr = Walls.vcptr;
assert(WALL_IS_DOORWAY(GameBitmaps, Textures, vcwallptr, seg, sidenum) == WID_TRANSPARENT_WALL);
#endif
#endif
const auto hitpoint = find_hitpoint_uv(pnt,seg,sidenum,facenum); // Don't compute light value.
auto &u = hitpoint.u;
auto &v = hitpoint.v;
const auto tmap_num = side.tmap_num;
const grs_bitmap &rbm = (side.tmap_num2 != texture2_value::None)
? texmerge_get_cached_bitmap(tmap_num, side.tmap_num2)
: ( [tmap_num]() -> const grs_bitmap & {
auto &texture1 = Textures[get_texture_index(tmap_num)];
PIGGY_PAGE_IN(texture1);
return GameBitmaps[texture1.index];
} () );
const auto bm = rle_expand_texture(rbm);
bmx = static_cast<unsigned>(f2i(u*bm->bm_w)) % bm->bm_w;
bmy = static_cast<unsigned>(f2i(v*bm->bm_h)) % bm->bm_h;
//note: the line above had -v, but that was wrong, so I changed it. if
//something doesn't work, and you want to make it negative again, you
//should figure out what's going on.
#if defined(DXX_BUILD_DESCENT_I)
return (gr_gpixel (*bm, bmx, bmy) == TRANSPARENCY_COLOR);
#elif defined(DXX_BUILD_DESCENT_II)
return (bm->bm_data[bmy*bm->bm_w+bmx] == TRANSPARENCY_COLOR);
#endif
}
}
}
namespace {
//new function for Mike
//note: n_segs_visited must be set to zero before this is called
static sphere_intersects_wall_result sphere_intersects_wall(fvcsegptridx &vcsegptridx, fvcvertptr &vcvertptr, const vms_vector &pnt, const vcsegptridx_t seg, const fix rad, fvi_segments_visited_t &visited)
{
int facemask;
visited[seg] = true;
++visited.count;
const shared_segment &sseg = seg;
facemask = get_seg_masks(vcvertptr, pnt, sseg, rad).facemask;
if (facemask != 0) { //on the back of at least one face
int face;
//for each face we are on the back of, check if intersected
int bit = 1;
for (const auto side : MAX_SIDES_PER_SEGMENT)
{
if (facemask < bit)
break;
for (face=0;face<2;face++,bit<<=1) {
if (facemask & bit) { //on the back of this face
//did we go through this wall/door?
auto &sidep = sseg.sides[side];
const auto &&[num_faces, vertex_list] = create_abs_vertex_lists(sseg, sidep, side);
//in what way did we hit the face?
const auto face_hit_type = check_sphere_to_face(pnt, sidep.normals[face],
face,((num_faces==1)?4:3),rad,vertex_list);
if (face_hit_type != intersection_type::None)
{ //through this wall/door
//if what we have hit is a door, check the adjoining seg
const auto child = sseg.children[side];
if (!IS_CHILD(child))
{
return {&sseg, side};
}
else if (!visited[child]) { //haven't visited here yet
const auto &&r = sphere_intersects_wall(vcsegptridx, vcvertptr, pnt, vcsegptridx(child), rad, visited);
if (r.seg)
return r;
}
}
}
}
}
}
return {};
}
}
sphere_intersects_wall_result sphere_intersects_wall(fvcsegptridx &vcsegptridx, fvcvertptr &vcvertptr, const vms_vector &pnt, const vcsegptridx_t seg, const fix rad)
{
fvi_segments_visited_t visited;
return sphere_intersects_wall(vcsegptridx, vcvertptr, pnt, seg, rad, visited);
}