dxx-rebirth/main/lighting.c

376 lines
9.5 KiB
C

/*
THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX
SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO
END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A
ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS
IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS
SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE
FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE
CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS
AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE.
COPYRIGHT 1993-1998 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED.
*/
/*
*
* Lighting functions.
*
*/
#include <stdlib.h>
#include <string.h> // for memset()
#include "inferno.h"
#include "segment.h"
#include "error.h"
#include "render.h"
#include "game.h"
#include "vclip.h"
#include "lighting.h"
#include "3d.h"
#include "laser.h"
#include "timer.h"
#include "player.h"
#include "weapon.h"
#include "powerup.h"
//global saying how bright the light beam is
fix Beam_brightness = (F1_0/2);
// -- optimized out, mk, 11/28/94 -- fix Face_light_scale = (F1_0/2);
int use_beam; //flag for beam effect
int Do_dynamic_light=1;
fix Dynamic_light[MAX_VERTICES];
// ----------------------------------------------------------------------------------------------
void apply_light(fix obj_intensity, int obj_seg, vms_vector *obj_pos, int n_render_vertices, short *render_vertices)
{
int vv;
if (obj_intensity) {
fix obji_64 = obj_intensity*64;
// for pretty dim sources, only process vertices in object's own segment.
if (obji_64 <= F1_0*8) {
short *vp = Segments[obj_seg].verts;
for (vv=0; vv<MAX_VERTICES_PER_SEGMENT; vv++) {
int vertnum;
vms_vector *vertpos;
fix dist;
vertnum = vp[vv];
vertpos = &Vertices[vertnum];
dist = vm_vec_dist_quick(obj_pos, vertpos);
dist = fixmul(dist/4, dist/4);
if (dist < obji_64) {
if (dist < MIN_LIGHT_DIST)
dist = MIN_LIGHT_DIST;
Dynamic_light[vertnum] += fixdiv(obj_intensity, dist);
}
}
} else {
for (vv=FrameCount&1; vv<n_render_vertices; vv+=2) {
int vertnum;
vms_vector *vertpos;
fix dist;
vertnum = render_vertices[vv];
vertpos = &Vertices[vertnum];
dist = vm_vec_dist_quick(obj_pos, vertpos);
if (dist < obji_64) {
if (dist < MIN_LIGHT_DIST)
dist = MIN_LIGHT_DIST;
Dynamic_light[vertnum] += fixdiv(obj_intensity, dist);
}
}
}
}
}
#define FLASH_LEN_FIXED_SECONDS (F1_0/3)
#define FLASH_SCALE (3*F1_0/FLASH_LEN_FIXED_SECONDS)
// ----------------------------------------------------------------------------------------------
void cast_muzzle_flash_light(int n_render_vertices, short *render_vertices)
{
fix current_time;
int i;
short time_since_flash;
current_time = timer_get_fixed_seconds();
for (i=0; i<MUZZLE_QUEUE_MAX; i++) {
if (Muzzle_data[i].create_time) {
time_since_flash = current_time - Muzzle_data[i].create_time;
if (time_since_flash < FLASH_LEN_FIXED_SECONDS)
apply_light((FLASH_LEN_FIXED_SECONDS - time_since_flash) * FLASH_SCALE, Muzzle_data[i].segnum, &Muzzle_data[i].pos, n_render_vertices, render_vertices);
else
Muzzle_data[i].create_time = 0; // turn off this muzzle flash
}
}
}
// Translation table to make flares flicker at different rates
fix Obj_light_xlate[16] =
{0x1234, 0x3321, 0x2468, 0x1735,
0x0123, 0x19af, 0x3f03, 0x232a,
0x2123, 0x39af, 0x0f03, 0x132a,
0x3123, 0x29af, 0x1f03, 0x032a};
// ----------------------------------------------------------------------------------------------
void set_dynamic_light(void)
{
int objnum,vertnum;
int n_render_vertices;
short render_vertices[MAX_VERTICES];
sbyte render_vertex_flags[MAX_VERTICES];
int render_seg,segnum, v;
if (!Do_dynamic_light)
return;
memset(render_vertex_flags, 0, Highest_vertex_index+1);
// Create list of vertices that need to be looked at for setting of ambient light.
n_render_vertices = 0;
for (render_seg=0; render_seg<N_render_segs; render_seg++) {
segnum = Render_list[render_seg];
if (segnum != -1) {
short *vp = Segments[segnum].verts;
for (v=0; v<MAX_VERTICES_PER_SEGMENT; v++) {
int vnum = vp[v];
if (vnum<0 || vnum>Highest_vertex_index) {
Int3(); //invalid vertex number
continue; //ignore it, and go on to next one
}
if (!render_vertex_flags[vnum]) {
render_vertex_flags[vnum] = 1;
render_vertices[n_render_vertices++] = vnum;
}
//--old way-- for (s=0; s<n_render_vertices; s++)
//--old way-- if (render_vertices[s] == vnum)
//--old way-- break;
//--old way-- if (s == n_render_vertices)
//--old way-- render_vertices[n_render_vertices++] = vnum;
}
}
}
for (vertnum=FrameCount&1; vertnum<n_render_vertices; vertnum+=2) {
Assert(render_vertices[vertnum]>=0 && render_vertices[vertnum]<=Highest_vertex_index);
Dynamic_light[render_vertices[vertnum]] = 0;
}
cast_muzzle_flash_light(n_render_vertices, render_vertices);
// Note, starting at 1 to skip player, whose light is handled by a different system, of course.
// for (objnum=1; objnum<=Highest_object_index; objnum++) {
for (render_seg=0; render_seg<N_render_segs; render_seg++) {
int segnum = Render_list[render_seg];
objnum = Segments[segnum].objects;
while (objnum != -1) {
object *obj = &Objects[objnum];
vms_vector *objpos = &obj->pos;
int objtype = obj->type;
fix obj_intensity;
switch (objtype) {
case OBJ_FIREBALL:
if (obj->id != 0xff) {
if (obj->lifeleft < F1_0*4)
obj_intensity = fixmul(fixdiv(obj->lifeleft, Vclip[obj->id].play_time), Vclip[obj->id].light_value);
else
obj_intensity = Vclip[obj->id].light_value;
} else
obj_intensity = 0;
break;
case OBJ_ROBOT:
obj_intensity = F1_0/2; // + (FrameCount & 0x1f)*F1_0/16;
break;
case OBJ_WEAPON:
obj_intensity = Weapon_info[obj->id].light;
if (obj->id == FLARE_ID )
obj_intensity = 2* (min(obj_intensity, obj->lifeleft) + ((GameTime ^ Obj_light_xlate[objnum&0x0f]) & 0x3fff));
break;
case OBJ_POWERUP:
obj_intensity = Powerup_info[obj->id].light;
break;
case OBJ_DEBRIS:
obj_intensity = F1_0/4;
break;
case OBJ_LIGHT:
obj_intensity = obj->ctype.light_info.intensity;
break;
default:
obj_intensity = 0;
break;
}
if (obj_intensity)
apply_light(obj_intensity, obj->segnum, objpos, n_render_vertices, render_vertices);
objnum = obj->next;
}
}
}
// ---------------------------------------------------------
//Compute the lighting from the headlight for a given vertex on a face.
//Takes:
// point - the 3d coords of the point
// face_light - a scale factor derived from the surface normal of the face
//If no surface normal effect is wanted, pass F1_0 for face_light
fix compute_headlight_light(vms_vector *point,fix face_light)
{
fix light;
light = Beam_brightness;
if (light) { //if no beam, don't bother with the rest of this
fix point_dist;
if (face_light < 0)
face_light = 0;
point_dist = vm_vec_mag_quick(point);
//note: beam scale not used if !use_beam
if (point_dist >= MAX_DIST)
light = 0;
else {
fix dist_scale,temp_lightval;
dist_scale = (MAX_DIST - point_dist) >> MAX_DIST_LOG;
temp_lightval = f1_0/4 + face_light/2;
light = Beam_brightness;
if (use_beam) {
fix beam_scale;
beam_scale = fixdiv(point->z,point_dist);
beam_scale = fixmul(beam_scale,beam_scale); //square it
light = fixmul(light,beam_scale);
}
light = fixmul(light,fixmul(dist_scale,temp_lightval));
}
}
return light;
}
//compute the average dynamic light in a segment. Takes the segment number
fix compute_seg_dynamic_light(int segnum)
{
fix sum;
segment *seg;
short *verts;
seg = &Segments[segnum];
verts = seg->verts;
sum = 0;
sum += Dynamic_light[*verts++];
sum += Dynamic_light[*verts++];
sum += Dynamic_light[*verts++];
sum += Dynamic_light[*verts++];
sum += Dynamic_light[*verts++];
sum += Dynamic_light[*verts++];
sum += Dynamic_light[*verts++];
sum += Dynamic_light[*verts];
return sum >> 3;
}
fix object_light[MAX_OBJECTS];
int object_id[MAX_OBJECTS];
object *old_viewer;
#define LIGHT_RATE i2f(4) //how fast the light ramps up
//compute the lighting for an object. Takes a pointer to the object,
//and possibly a rotated 3d point. If the point isn't specified, the
//object's center point is rotated.
fix compute_object_light(object *obj,vms_vector *rotated_pnt)
{
fix light;
g3s_point objpnt;
int objnum = obj-Objects;
if (!rotated_pnt) {
g3_rotate_point(&objpnt,&obj->pos);
rotated_pnt = &objpnt.p3_vec;
}
//First, get static light for this segment
light = Segments[obj->segnum].static_light;
//return light;
//Now, maybe return different value to smooth transitions
if (Viewer==old_viewer && object_id[objnum] == obj->id) {
fix delta_light,frame_delta;
delta_light = light - object_light[objnum];
frame_delta = fixmul(LIGHT_RATE,FrameTime);
if (abs(delta_light) <= frame_delta)
object_light[objnum] = light; //we've hit the goal
else
if (delta_light < 0)
light = object_light[objnum] -= frame_delta;
else
light = object_light[objnum] += frame_delta;
}
else { //new object, initialize
object_id[objnum] = obj->id;
object_light[objnum] = light;
}
//Next, add in headlight on this object
light += compute_headlight_light(rotated_pnt,f1_0);
//Finally, add in dynamic light for this segment
light += compute_seg_dynamic_light(obj->segnum);
old_viewer = Viewer;
return light;
}