/* * Portions of this file are copyright Rebirth contributors and licensed as * described in COPYING.txt. * Portions of this file are copyright Parallax Software and licensed * according to the Parallax license below. * See COPYING.txt for license details. THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE. COPYRIGHT 1993-1998 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED. */ /* * * Routines to do run length encoding/decoding * on bitmaps. * */ #include #include #include #include #include "pstypes.h" #include "u_mem.h" #include "gr.h" #include "grdef.h" #include "dxxerror.h" #include "rle.h" #include "byteutil.h" #include "compiler-range_for.h" namespace dcx { constexpr uint8_t RLE_CODE = 0xe0; constexpr uint8_t NOT_RLE_CODE = 0x1f; static_assert((RLE_CODE | NOT_RLE_CODE) == 0xff, "RLE mask error"); static inline int IS_RLE_CODE(const uint8_t &x) { return (x & RLE_CODE) == RLE_CODE; } #define rle_stosb(_dest, _len, _color) memset(_dest,_color,_len) rle_position_t gr_rle_decode(rle_position_t b, const rle_position_t e) { using std::advance; using std::distance; for (; b.src != e.src;) { const uint8_t *p = b.src; uint8_t c; for (; c = *p, !IS_RLE_CODE(c);) if (++p == e.src) return {e.src, b.dst}; size_t count = (c & NOT_RLE_CODE); size_t cn = std::min(distance(b.src, p), distance(b.dst, e.dst)); memcpy(b.dst, b.src, cn); advance(b.dst, cn); if (!count) return {e.src, b.dst}; advance(b.src, cn); if (b.src == e.src || b.dst == e.dst || count > static_cast(distance(b.dst, e.dst))) break; if (++ b.src == e.src) break; std::fill_n(b.dst, count, *b.src++); advance(b.dst, count); } return b; } // Given pointer to start of one scanline of rle data, uncompress it to // dest, from source pixels x1 to x2. void gr_rle_expand_scanline_masked(uint8_t *dest, const uint8_t *src, int x1, int x2) { int i = 0; ubyte count; ubyte color=0; if ( x2 < x1 ) return; count = 0; while ( i < x1 ) { color = *src++; if ( color == RLE_CODE ) return; if ( IS_RLE_CODE(color) ) { count = color & NOT_RLE_CODE; color = *src++; } else { // unique count = 1; } i += count; } count = i - x1; i = x1; // we know have '*count' pixels of 'color'. if ( x1+count > x2 ) { count = x2-x1+1; if ( color != TRANSPARENCY_COLOR ) rle_stosb( dest, count, color ); return; } if ( color != TRANSPARENCY_COLOR ) rle_stosb( dest, count, color ); dest += count; i += count; while( i <= x2 ) { color = *src++; if ( color == RLE_CODE ) return; if ( IS_RLE_CODE(color) ) { count = color & NOT_RLE_CODE; color = *src++; } else { // unique count = 1; } // we know have '*count' pixels of 'color'. if ( i+count <= x2 ) { if ( color != 255 )rle_stosb( dest, count, color ); i += count; dest += count; } else { count = x2-i+1; if ( color != 255 )rle_stosb( dest, count, color ); i += count; dest += count; } } } void gr_rle_expand_scanline(uint8_t *dest, const uint8_t *src, int x1, int x2) { int i = 0; ubyte count; ubyte color=0; if ( x2 < x1 ) return; count = 0; while ( i < x1 ) { color = *src++; if ( color == RLE_CODE ) return; if ( IS_RLE_CODE(color) ) { count = color & NOT_RLE_CODE; color = *src++; } else { // unique count = 1; } i += count; } count = i - x1; i = x1; // we know have '*count' pixels of 'color'. if ( x1+count > x2 ) { count = x2-x1+1; rle_stosb( dest, count, color ); return; } rle_stosb( dest, count, color ); dest += count; i += count; while( i <= x2 ) { color = *src++; if ( color == RLE_CODE ) return; if ( IS_RLE_CODE(color) ) { count = color & (~RLE_CODE); color = *src++; } else { // unique count = 1; } // we know have '*count' pixels of 'color'. if ( i+count <= x2 ) { rle_stosb( dest, count, color ); i += count; dest += count; } else { count = x2-i+1; rle_stosb( dest, count, color ); i += count; dest += count; } } } static std::ptrdiff_t gr_rle_encode( int org_size, const uint8_t *src, ubyte *dest ) { ubyte c, oc; ubyte count; uint8_t *dest_start; dest_start = dest; oc = *src++; count = 1; if (org_size > 0) for (uint_fast32_t i = org_size; --i;) { c = *src++; if ( c!=oc ) { if ( count ) { if ( (count==1) && (! IS_RLE_CODE(oc)) ) { *dest++ = oc; Assert( oc != RLE_CODE ); } else { count |= RLE_CODE; *dest++ = count; *dest++ = oc; } } oc = c; count = 0; } count++; if ( count == NOT_RLE_CODE ) { count |= RLE_CODE; *dest++=count; *dest++=oc; count = 0; } } if (count) { if ( (count==1) && (! IS_RLE_CODE(oc)) ) { *dest++ = oc; Assert( oc != RLE_CODE ); } else { count |= RLE_CODE; *dest++ = count; *dest++ = oc; } } *dest++ = RLE_CODE; return dest-dest_start; } static unsigned gr_rle_getsize(int org_size, const uint8_t *src) { ubyte c, oc; ubyte count; int dest_size=0; oc = *src++; count = 1; if (org_size > 0) for (uint_fast32_t i = org_size; --i;) { c = *src++; if ( c!=oc ) { if ( count ) { if ( (count==1) && (! IS_RLE_CODE(oc)) ) { dest_size++; } else { dest_size++; dest_size++; } } oc = c; count = 0; } count++; if ( count == NOT_RLE_CODE ) { dest_size++; dest_size++; count = 0; } } if (count) { if ( (count==1) && (! IS_RLE_CODE(oc)) ) { dest_size++; } else { dest_size++; dest_size++; } } dest_size++; return dest_size; } int gr_bitmap_rle_compress(grs_bitmap &bmp) { int doffset; int large_rle = 0; // first must check to see if this is large bitmap. const uint_fast32_t bm_h = bmp.bm_h; const uint_fast32_t bm_w = bmp.bm_w; for (uint_fast32_t y = 0; y != bm_h; ++y) { auto d1 = gr_rle_getsize(bm_w, &bmp.get_bitmap_data()[bm_w * y]); if (d1 > 255) { large_rle = BM_FLAG_RLE_BIG; break; } } RAIIdmem rle_data; MALLOC(rle_data, uint8_t[], MAX_BMP_SIZE(bm_w, bm_h)); if (!rle_data) return 0; if (!large_rle) doffset = 4 + bm_h; else doffset = 4 + (2 * bm_h); // each row of rle'd bitmap has short instead of byte offset now for (uint_fast32_t y = 0; y != bm_h; ++y) { auto d1 = gr_rle_getsize(bm_w, &bmp.get_bitmap_data()[bm_w * y]); if ( ((doffset+d1) > bmp.bm_w*bmp.bm_h) || (d1 > (large_rle?32767:255) ) ) { return 0; } const auto d = gr_rle_encode( bmp.bm_w, &bmp.get_bitmap_data()[bmp.bm_w*y], &rle_data[doffset] ); Assert( d==d1 ); doffset += d; if (large_rle) PUT_INTEL_SHORT(&rle_data[(y*2)+4], static_cast(d)); else rle_data[y+4] = d; } memcpy(bmp.get_bitmap_data(), &doffset, 4); memcpy(&bmp.get_bitmap_data()[4], &rle_data.get()[4], doffset - 4); bmp.bm_flags |= BM_FLAG_RLE | large_rle; return 1; } namespace { struct rle_cache_element { const grs_bitmap *rle_bitmap; grs_bitmap_ptr expanded_bitmap; int last_used; }; } static int rle_cache_initialized; static int rle_counter; static int rle_next; static array rle_cache; void rle_cache_close(void) { if (rle_cache_initialized) { rle_cache_initialized = 0; range_for (auto &i, rle_cache) i.expanded_bitmap.reset(); } } static void rle_cache_init() { rle_cache = {}; rle_cache_initialized = 1; } void rle_cache_flush() { range_for (auto &i, rle_cache) { i.rle_bitmap = NULL; i.last_used = 0; } } static void rle_expand_texture_sub(const grs_bitmap &bmp, grs_bitmap &rle_temp_bitmap_1) { auto sbits = &bmp.get_bitmap_data()[4 + bmp.bm_h]; auto dbits = rle_temp_bitmap_1.get_bitmap_data(); rle_temp_bitmap_1.bm_flags = bmp.bm_flags & (~BM_FLAG_RLE); for (int i=0; i < bmp.bm_h; i++ ) { gr_rle_decode({sbits, dbits}, rle_end(bmp, rle_temp_bitmap_1)); sbits += static_cast(bmp.bm_data[4+i]); dbits += bmp.bm_w; } } grs_bitmap *_rle_expand_texture(const grs_bitmap &bmp) { int lowest_count, lc; if (!rle_cache_initialized) rle_cache_init(); Assert( !(bmp.bm_flags & BM_FLAG_PAGED_OUT) ); lc = rle_counter; rle_counter++; if (rle_counter < 0) rle_counter = 0; if ( rle_counter < lc ) { rle_cache_flush(); } lowest_count = rle_cache[rle_next].last_used; auto least_recently_used = &rle_cache[rle_next]; rle_next++; if (rle_next >= rle_cache.size()) rle_next = 0; range_for (auto &i, rle_cache) { if (i.rle_bitmap == &bmp) { i.last_used = rle_counter; return i.expanded_bitmap.get(); } if (i.last_used < lowest_count) { lowest_count = (least_recently_used = &i)->last_used; } } least_recently_used->expanded_bitmap = gr_create_bitmap(bmp.bm_w, bmp.bm_h); rle_expand_texture_sub(bmp, *least_recently_used->expanded_bitmap.get()); least_recently_used->rle_bitmap = &bmp; least_recently_used->last_used = rle_counter; return least_recently_used->expanded_bitmap.get(); } void gr_rle_expand_scanline_generic(grs_bitmap &dest, int dx, int dy, const ubyte *src, int x1, int x2 ) { int i = 0; int count; ubyte color=0; if ( x2 < x1 ) return; count = 0; while ( i < x1 ) { color = *src++; if ( color == RLE_CODE ) return; if ( IS_RLE_CODE(color) ) { count = color & NOT_RLE_CODE; color = *src++; } else { // unique count = 1; } i += count; } count = i - x1; i = x1; // we know have '*count' pixels of 'color'. if ( x1+count > x2 ) { count = x2-x1+1; for ( int j=0; j temp; MALLOC(temp, uint8_t[], MAX_BMP_SIZE(bmp.bm_w, bmp.bm_h)); const std::size_t pointer_offset = rle_big ? 4 + 2 * bmp.bm_h : 4 + bmp.bm_h; auto ptr = &bmp.bm_data[pointer_offset]; auto ptr2 = &temp[pointer_offset]; for (int i = 0; i < bmp.bm_h; i++) { start = ptr2; if (rle_big) line_size = GET_INTEL_SHORT(&bmp.bm_data[4 + 2 * i]); else line_size = bmp.bm_data[4 + i]; for (int j = 0; j < line_size; j++) { if ( ! IS_RLE_CODE(ptr[j]) ) { if (ptr[j] == 0) { *ptr2++ = RLE_CODE | 1; *ptr2++ = 255; } else *ptr2++ = ptr[j]; } else { *ptr2++ = ptr[j]; if ((ptr[j] & NOT_RLE_CODE) == 0) break; j++; if (ptr[j] == 0) *ptr2++ = 255; else if (ptr[j] == 255) *ptr2++ = 0; else *ptr2++ = ptr[j]; } } if (rle_big) // set line size PUT_INTEL_SHORT(&temp[4 + 2 * i], static_cast(ptr2 - start)); else temp[4 + i] = ptr2 - start; ptr += line_size; // go to next line } len = ptr2 - temp.get(); memcpy(bmp.get_bitmap_data(), &len, 4); memcpy(&bmp.get_bitmap_data()[4], &temp.get()[4], len - 4); } /* * remaps all entries using colormap in an RLE bitmap without uncompressing it */ void rle_remap(grs_bitmap &bmp, array &colormap) { int len, rle_big; unsigned char *start; unsigned short line_size; rle_big = bmp.bm_flags & BM_FLAG_RLE_BIG; RAIIdmem temp; MALLOC(temp, uint8_t[], MAX_BMP_SIZE(bmp.bm_w, bmp.bm_h) + 30000); const std::size_t pointer_offset = rle_big ? 4 + 2 * bmp.bm_h : 4 + bmp.bm_h; auto ptr = &bmp.get_bitmap_data()[pointer_offset]; auto ptr2 = &temp[pointer_offset]; for (int i = 0; i < bmp.bm_h; i++) { start = ptr2; if (rle_big) line_size = GET_INTEL_SHORT(&bmp.get_bitmap_data()[4 + 2 * i]); else line_size = bmp.get_bitmap_data()[4 + i]; for (int j = 0; j < line_size; j++) { if ( ! IS_RLE_CODE(ptr[j])) { if (IS_RLE_CODE(colormap[ptr[j]])) *ptr2++ = RLE_CODE | 1; // add "escape sequence" *ptr2++ = colormap[ptr[j]]; // translate } else { *ptr2++ = ptr[j]; // just copy current rle code if ((ptr[j] & NOT_RLE_CODE) == 0) break; j++; *ptr2++ = colormap[ptr[j]]; // translate } } if (rle_big) // set line size PUT_INTEL_SHORT(&temp[4 + 2 * i], static_cast(ptr2 - start)); else temp[4 + i] = ptr2 - start; ptr += line_size; // go to next line } len = ptr2 - temp.get(); memcpy(bmp.get_bitmap_data(), &len, 4); memcpy(&bmp.get_bitmap_data()[4], &temp.get()[4], len - 4); } }