/* * Portions of this file are copyright Rebirth contributors and licensed as * described in COPYING.txt. * Portions of this file are copyright Parallax Software and licensed * according to the Parallax license below. * See COPYING.txt for license details. THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE. COPYRIGHT 1993-1998 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED. */ /* * * Routines to do run length encoding/decoding * on bitmaps. * */ #include #include #include #include #include "pstypes.h" #include "u_mem.h" #include "gr.h" #include "grdef.h" #include "dxxerror.h" #include "rle.h" #include "byteutil.h" #define RLE_CODE 0xE0 #define NOT_RLE_CODE 31 #define IS_RLE_CODE(x) (((x) & RLE_CODE) == RLE_CODE) #define rle_stosb(_dest, _len, _color) memset(_dest,_color,_len) rle_position_t gr_rle_decode(rle_position_t b, const rle_position_t e) { using std::advance; using std::distance; for (; b.src != e.src;) { const uint8_t *p = b.src; uint8_t c; for (; c = *p, !IS_RLE_CODE(c);) if (++p == e.src) return {e.src, b.dst}; size_t count = (c & NOT_RLE_CODE); size_t cn = std::min(distance(b.src, p), distance(b.dst, e.dst)); memcpy(b.dst, b.src, cn); advance(b.dst, cn); if (!count) return {e.src, b.dst}; advance(b.src, cn); if (b.src == e.src || b.dst == e.dst || count > static_cast(distance(b.dst, e.dst))) break; if (++ b.src == e.src) break; std::fill_n(b.dst, count, *b.src++); advance(b.dst, count); } return b; } // Given pointer to start of one scanline of rle data, uncompress it to // dest, from source pixels x1 to x2. void gr_rle_expand_scanline_masked( ubyte *dest, ubyte *src, int x1, int x2 ) { int i = 0; ubyte count; ubyte color=0; if ( x2 < x1 ) return; count = 0; while ( i < x1 ) { color = *src++; if ( color == RLE_CODE ) return; if ( IS_RLE_CODE(color) ) { count = color & (~RLE_CODE); color = *src++; } else { // unique count = 1; } i += count; } count = i - x1; i = x1; // we know have '*count' pixels of 'color'. if ( x1+count > x2 ) { count = x2-x1+1; if ( color != TRANSPARENCY_COLOR ) rle_stosb( dest, count, color ); return; } if ( color != TRANSPARENCY_COLOR ) rle_stosb( dest, count, color ); dest += count; i += count; while( i <= x2 ) { color = *src++; if ( color == RLE_CODE ) return; if ( IS_RLE_CODE(color) ) { count = color & (~RLE_CODE); color = *src++; } else { // unique count = 1; } // we know have '*count' pixels of 'color'. if ( i+count <= x2 ) { if ( color != 255 )rle_stosb( dest, count, color ); i += count; dest += count; } else { count = x2-i+1; if ( color != 255 )rle_stosb( dest, count, color ); i += count; dest += count; } } } void gr_rle_expand_scanline( ubyte *dest, ubyte *src, int x1, int x2 ) { int i = 0; ubyte count; ubyte color=0; if ( x2 < x1 ) return; count = 0; while ( i < x1 ) { color = *src++; if ( color == RLE_CODE ) return; if ( IS_RLE_CODE(color) ) { count = color & (~RLE_CODE); color = *src++; } else { // unique count = 1; } i += count; } count = i - x1; i = x1; // we know have '*count' pixels of 'color'. if ( x1+count > x2 ) { count = x2-x1+1; rle_stosb( dest, count, color ); return; } rle_stosb( dest, count, color ); dest += count; i += count; while( i <= x2 ) { color = *src++; if ( color == RLE_CODE ) return; if ( IS_RLE_CODE(color) ) { count = color & (~RLE_CODE); color = *src++; } else { // unique count = 1; } // we know have '*count' pixels of 'color'. if ( i+count <= x2 ) { rle_stosb( dest, count, color ); i += count; dest += count; } else { count = x2-i+1; rle_stosb( dest, count, color ); i += count; dest += count; } } } int gr_rle_encode( int org_size, ubyte *src, ubyte *dest ) { ubyte c, oc; ubyte count; ubyte *dest_start; dest_start = dest; oc = *src++; count = 1; for (int i=1; ibm_h; y++ ) { d1= gr_rle_getsize( bmp->bm_w, &bmp->bm_data[bmp->bm_w*y] ); if (d1 > 255) { large_rle = 1; break; } } RAIIdubyte rle_data; MALLOC(rle_data, ubyte, MAX_BMP_SIZE(bmp->bm_w, bmp->bm_h)); if (rle_data==NULL) return 0; if (!large_rle) doffset = 4 + bmp->bm_h; else doffset = 4 + (2 * bmp->bm_h); // each row of rle'd bitmap has short instead of byte offset now for (int y=0; ybm_h; y++ ) { d1= gr_rle_getsize( bmp->bm_w, &bmp->bm_data[bmp->bm_w*y] ); if ( ((doffset+d1) > bmp->bm_w*bmp->bm_h) || (d1 > (large_rle?32767:255) ) ) { return 0; } d = gr_rle_encode( bmp->bm_w, &bmp->bm_data[bmp->bm_w*y], &rle_data[doffset] ); Assert( d==d1 ); doffset += d; if (large_rle) *((short *)&(rle_data[(y*2)+4])) = (short)d; else rle_data[y+4] = d; } memcpy( rle_data, &doffset, 4 ); memcpy( bmp->bm_data, rle_data, doffset ); bmp->bm_flags |= BM_FLAG_RLE; if (large_rle) bmp->bm_flags |= BM_FLAG_RLE_BIG; return 1; } #define MAX_CACHE_BITMAPS 32 struct rle_cache_element { grs_bitmap * rle_bitmap; ubyte * rle_data; grs_bitmap_ptr expanded_bitmap; int last_used; }; int rle_cache_initialized = 0; int rle_counter = 0; int rle_next = 0; static array rle_cache; int rle_hits = 0; int rle_misses = 0; void rle_cache_close(void) { if (rle_cache_initialized) { rle_cache_initialized = 0; for (int i=0; ibm_data[4 + bmp->bm_h]; dbits = rle_temp_bitmap_1->bm_data; rle_temp_bitmap_1->bm_flags = bmp->bm_flags & (~BM_FLAG_RLE); for (int i=0; i < bmp->bm_h; i++ ) { gr_rle_decode({sbits, dbits}, rle_end(bmp, rle_temp_bitmap_1)); sbits += (int)bmp->bm_data[4+i]; dbits += bmp->bm_w; } } grs_bitmap * rle_expand_texture( grs_bitmap * bmp ) { int lowest_count, lc; int least_recently_used; if (!rle_cache_initialized) rle_cache_init(); Assert( !(bmp->bm_flags & BM_FLAG_PAGED_OUT) ); lc = rle_counter; rle_counter++; if (rle_counter < 0) rle_counter = 0; if ( rle_counter < lc ) { for (int i=0; i= MAX_CACHE_BITMAPS ) rle_next = 0; for (int i=0; ibm_w, bmp->bm_h); rle_expand_texture_sub(bmp, rle_cache[least_recently_used].expanded_bitmap.get()); rle_cache[least_recently_used].rle_bitmap = bmp; rle_cache[least_recently_used].last_used = rle_counter; return rle_cache[least_recently_used].expanded_bitmap.get(); } void gr_rle_expand_scanline_generic( grs_bitmap * dest, int dx, int dy, ubyte *src, int x1, int x2 ) { int i = 0; int count; ubyte color=0; if ( x2 < x1 ) return; count = 0; while ( i < x1 ) { color = *src++; if ( color == RLE_CODE ) return; if ( IS_RLE_CODE(color) ) { count = color & NOT_RLE_CODE; color = *src++; } else { // unique count = 1; } i += count; } count = i - x1; i = x1; // we know have '*count' pixels of 'color'. if ( x1+count > x2 ) { count = x2-x1+1; for ( int j=0; jbm_flags & BM_FLAG_RLE_BIG; RAIIdubyte temp; MALLOC(temp, unsigned char, MAX_BMP_SIZE(bmp->bm_w, bmp->bm_h)); if (rle_big) { // set ptrs to first lines ptr = bmp->bm_data + 4 + 2 * bmp->bm_h; ptr2 = temp + 4 + 2 * bmp->bm_h; } else { ptr = bmp->bm_data + 4 + bmp->bm_h; ptr2 = temp + 4 + bmp->bm_h; } for (int i = 0; i < bmp->bm_h; i++) { start = ptr2; if (rle_big) line_size = INTEL_SHORT(*((unsigned short *)&bmp->bm_data[4 + 2 * i])); else line_size = bmp->bm_data[4 + i]; for (int j = 0; j < line_size; j++) { if ( ! IS_RLE_CODE(ptr[j]) ) { if (ptr[j] == 0) { *ptr2++ = RLE_CODE | 1; *ptr2++ = 255; } else *ptr2++ = ptr[j]; } else { *ptr2++ = ptr[j]; if ((ptr[j] & NOT_RLE_CODE) == 0) break; j++; if (ptr[j] == 0) *ptr2++ = 255; else if (ptr[j] == 255) *ptr2++ = 0; else *ptr2++ = ptr[j]; } } if (rle_big) // set line size *((unsigned short *)&temp[4 + 2 * i]) = INTEL_SHORT(ptr2 - start); else temp[4 + i] = ptr2 - start; ptr += line_size; // go to next line } len = ptr2 - temp; *((int *)(unsigned char *)temp) = len; // set total size memcpy(bmp->bm_data, temp, len); } /* * remaps all entries using colormap in an RLE bitmap without uncompressing it */ void rle_remap(grs_bitmap *bmp, ubyte *colormap) { int len, rle_big; unsigned char *ptr, *ptr2, *start; unsigned short line_size; rle_big = bmp->bm_flags & BM_FLAG_RLE_BIG; RAIIdubyte temp; MALLOC(temp, unsigned char, MAX_BMP_SIZE(bmp->bm_w, bmp->bm_h) + 30000); if (rle_big) { // set ptrs to first lines ptr = bmp->bm_data + 4 + 2 * bmp->bm_h; ptr2 = temp + 4 + 2 * bmp->bm_h; } else { ptr = bmp->bm_data + 4 + bmp->bm_h; ptr2 = temp + 4 + bmp->bm_h; } for (int i = 0; i < bmp->bm_h; i++) { start = ptr2; if (rle_big) line_size = INTEL_SHORT(*((unsigned short *)&bmp->bm_data[4 + 2 * i])); else line_size = bmp->bm_data[4 + i]; for (int j = 0; j < line_size; j++) { if ( ! IS_RLE_CODE(ptr[j])) { if (IS_RLE_CODE(colormap[ptr[j]])) *ptr2++ = RLE_CODE | 1; // add "escape sequence" *ptr2++ = colormap[ptr[j]]; // translate } else { *ptr2++ = ptr[j]; // just copy current rle code if ((ptr[j] & NOT_RLE_CODE) == 0) break; j++; *ptr2++ = colormap[ptr[j]]; // translate } } if (rle_big) // set line size *((unsigned short *)&temp[4 + 2 * i]) = INTEL_SHORT(ptr2 - start); else temp[4 + i] = ptr2 - start; ptr += line_size; // go to next line } len = ptr2 - temp; *((int *)(unsigned char *)temp) = len; // set total size memcpy(bmp->bm_data, temp, len); }