/* * Portions of this file are copyright Rebirth contributors and licensed as * described in COPYING.txt. * Portions of this file are copyright Parallax Software and licensed * according to the Parallax license below. * See COPYING.txt for license details. THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE. COPYRIGHT 1993-1998 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED. */ /* * * Med drawing functions. * */ #include #include #include #include #include #include "inferno.h" #include "segment.h" #include "segpoint.h" #include "gameseg.h" #include "gr.h" #include "ui.h" #include "editor/editor.h" #include "editor/esegment.h" #include "wall.h" #include "switch.h" #include "key.h" #include "mouse.h" #include "dxxerror.h" #include "medlisp.h" #include "u_mem.h" #include "render.h" #include "game.h" #include "kdefs.h" #include "func.h" #include "textures.h" #include "screens.h" #include "texmap.h" #include "object.h" #include "fuelcen.h" #include "meddraw.h" #include "compiler-range_for.h" #include "segiter.h" #ifdef OGL #include "ogl_init.h" #endif using std::min; // Colors used in editor for indicating various kinds of segments. #define SELECT_COLOR BM_XRGB( 63/2 , 41/2 , 0/2) #define FOUND_COLOR BM_XRGB( 0/2 , 30/2 , 45/2) #define WARNING_COLOR BM_XRGB( 63/2 , 0/2 , 0/2) #define AXIS_COLOR BM_XRGB( 63/2 , 0/2 , 63/2) #define PLAINSEG_COLOR BM_XRGB( 45/2 , 45/2 , 45/2) #define MARKEDSEG_COLOR BM_XRGB( 0/2 , 63/2 , 0/2) #define MARKEDSIDE_COLOR BM_XRGB( 0/2 , 63/2 , 63/2) #define CURSEG_COLOR BM_XRGB( 63/2 , 63/2 , 63/2) #define CURSIDE_COLOR BM_XRGB( 63/2 , 63/2 , 0/2) #define CUREDGE_COLOR BM_XRGB( 0 , 63/2 , 0 ) #define GROUPSEG_COLOR BM_XRGB( 0/2 , 0/2 , 63/2) #define GROUPSIDE_COLOR BM_XRGB( 63/2 , 0/2 , 45/2) #define GROUP_COLOR BM_XRGB( 0/2 , 45/2 , 0/2) #define ROBOT_COLOR BM_XRGB( 31 , 0 , 0 ) #define PLAYER_COLOR BM_XRGB( 0 , 0 , 31 ) constexpr unsigned MAX_EDGES = MAX_VERTICES * 4; static int Search_mode=0; //if true, searching for segments at given x,y static int Search_x,Search_y; static int Automap_test=0; // Set to 1 to show wireframe in automap mode. static void draw_seg_objects(const vcsegptr_t seg) { range_for (const auto obj, objects_in(*seg)) { auto sphere_point = g3_rotate_point(obj->pos); const uint8_t color = (obj->type==OBJ_PLAYER && static_cast(obj) > 0) ? BM_XRGB(0, 25, 0) : (obj == ConsoleObject ? PLAYER_COLOR : ROBOT_COLOR ); g3_draw_sphere(sphere_point,obj->size, color); } } static void draw_line(unsigned pnum0, unsigned pnum1, const uint8_t color) { g3_draw_line(Segment_points[pnum0], Segment_points[pnum1], color); } // ---------------------------------------------------------------------------- static void draw_segment(const vcsegptr_t seg, const uint8_t color) { if (seg->segnum == segment_none) //this segment doesn't exitst return; auto &svp = seg->verts; if (!rotate_list(svp).uand) { //all off screen? for (unsigned i = 0; i < 4; ++i) draw_line(svp[i], svp[i+4], color); for (unsigned i = 0; i < 3; ++i) { draw_line(svp[i], svp[i+1], color); draw_line(svp[i+4], svp[i+4+1], color); } draw_line(svp[0], svp[3], color); draw_line(svp[4], svp[3+4], color); } } //for looking for segment under a mouse click static void check_segment(const vsegptridx_t seg) { auto &svp = seg->verts; if (!rotate_list(svp).uand) { //all off screen? #ifdef OGL g3_end_frame(); #endif { uint8_t color = 0; gr_pixel(Search_x,Search_y, color); //set our search pixel to color zero } #ifdef OGL g3_start_frame(); #endif { const uint8_t color = 1; //and render in color one range_for (auto &fn, Side_to_verts) { array vert_list; vert_list[0] = &Segment_points[seg->verts[fn[0]]]; vert_list[1] = &Segment_points[seg->verts[fn[1]]]; vert_list[2] = &Segment_points[seg->verts[fn[2]]]; g3_check_and_draw_poly(vert_list, color); vert_list[1] = &Segment_points[seg->verts[fn[2]]]; vert_list[2] = &Segment_points[seg->verts[fn[3]]]; g3_check_and_draw_poly(vert_list, color); } } if (gr_ugpixel(grd_curcanv->cv_bitmap,Search_x,Search_y) == 1) { Found_segs.emplace_back(seg); } } } // ---------------------------------------------------------------------------- static void draw_seg_side(const vcsegptr_t seg, int side, const uint8_t color) { auto &svp = seg->verts; if (!rotate_list(svp).uand) { //all off screen? int i; auto &stv = Side_to_verts[side]; for (i=0;i<3;i++) draw_line(svp[stv[i]], svp[stv[i+1]], color); draw_line(svp[stv[i]], svp[stv[0]], color); } } static void draw_side_edge(const vcsegptr_t seg,int side,int edge, const uint8_t color) { auto &svp = seg->verts; if (!rotate_list(svp).uand) //on screen? { auto &stv = Side_to_verts[side]; draw_line(svp[stv[edge]], svp[stv[(edge + 1) % 4]], color); } } int Show_triangulations=0; //edge types - lower number types have precedence #define ET_FACING 0 //this edge on a facing face #define ET_NOTFACING 1 //this edge on a non-facing face #define ET_NOTUSED 2 //no face uses this edge #define ET_NOTEXTANT 3 //would exist if side were triangulated #define ET_EMPTY 255 //this entry in array is empty //colors for those types //int edge_colors[] = {BM_RGB(45/2,45/2,45/2), // BM_RGB(45/3,45/3,45/3), //BM_RGB(0,0,45), // // BM_RGB(45/4,45/4,45/4)}; //BM_RGB(0,45,0)}; // static #if defined(DXX_BUILD_DESCENT_I) const #endif array edge_colors{{54, 59, 64}}; namespace { struct seg_edge { union { struct {int v0,v1;} __pack__ n; long vv; }v; ushort type; ubyte face_count, backface_count; }; } static array edge_list; static array used_list; //which entries in edge_list have been used int n_used; int edge_list_size; //set each frame #define HASH(a,b) ((a*5+b) % edge_list_size) //define edge numberings constexpr int edges[] = { 0*8+1, // edge 0 0*8+3, // edge 1 0*8+4, // edge 2 1*8+2, // edge 3 1*8+5, // edge 4 2*8+3, // edge 5 2*8+6, // edge 6 3*8+7, // edge 7 4*8+5, // edge 8 4*8+7, // edge 9 5*8+6, // edge 10 6*8+7, // edge 11 0*8+5, // right cross 0*8+7, // top cross 1*8+3, // front cross 2*8+5, // bottom cross 2*8+7, // left cross 4*8+6, // back cross //crosses going the other way 1*8+4, // other right cross 3*8+4, // other top cross 0*8+2, // other front cross 1*8+6, // other bottom cross 3*8+6, // other left cross 5*8+7, // other back cross }; #define N_NORMAL_EDGES 12 //the normal edges of a box #define N_EXTRA_EDGES 12 //ones created by triangulation #define N_EDGES_PER_SEGMENT (N_NORMAL_EDGES+N_EXTRA_EDGES) using std::swap; //given two vertex numbers on a segment (range 0..7), tell what edge number it is static int find_edge_num(int v0,int v1) { int i; int vv; const int *edgep = edges; if (v0 > v1) swap(v0,v1); vv = v0*8+v1; // for (i=0;i v1) swap(v0,v1); found = find_edge(v0,v1,&e); if (found == -1) { e->v.n.v0 = v0; e->v.n.v1 = v1; e->type = type; used_list[n_used] = e - edge_list.begin(); if (type == ET_FACING) edge_list[used_list[n_used]].face_count++; else if (type == ET_NOTFACING) edge_list[used_list[n_used]].backface_count++; n_used++; } else { if (type < e->type) e->type = type; if (type == ET_FACING) edge_list[found].face_count++; else if (type == ET_NOTFACING) edge_list[found].backface_count++; } } //adds a segment's edges to the edge list static void add_edges(const vcsegptridx_t seg) { auto &svp = seg->verts; if (!rotate_list(svp).uand) { //all off screen? int i,sn,fn,vn; int flag; ubyte edge_flags[N_EDGES_PER_SEGMENT]; for (i=0;isides[sn]; int num_vertices; const auto v = create_all_vertex_lists(seg, sidep, sn); const auto &num_faces = v.first; const auto &vertex_list = v.second; if (num_faces == 1) num_vertices = 4; else num_vertices = 3; for (fn=0; fnverts[vertex_list[fn*3]]],sidep->normals[fn])) flag = ET_NOTFACING; else flag = ET_FACING; auto v0 = &vertex_list[fn*3]; for (vn=0; vnverts[edges[i]/8],seg->verts[edges[i]&7],edge_flags[i]); } } // ---------------------------------------------------------------------------- static void draw_trigger_side(const vcsegptr_t seg,int side, const uint8_t color) { auto &svp = seg->verts; if (!rotate_list(svp).uand) { //all off screen? // Draw diagonals auto &stv = Side_to_verts[side]; draw_line(svp[stv[0]], svp[stv[2]], color); } } // ---------------------------------------------------------------------------- static void draw_wall_side(const vcsegptr_t seg,int side, const uint8_t color) { auto &svp = seg->verts; if (!rotate_list(svp).uand) { //all off screen? // Draw diagonals auto &stv = Side_to_verts[side]; draw_line(svp[stv[0]], svp[stv[2]], color); draw_line(svp[stv[1]], svp[stv[3]], color); } } #define WALL_BLASTABLE_COLOR rgb_t{31, 0, 0} // RED #define WALL_DOOR_COLOR rgb_t{0, 0, 31} // DARK BLUE #define WALL_DOOR_LOCKED_COLOR rgb_t{0, 0, 63} // BLUE #define WALL_AUTO_DOOR_COLOR rgb_t{0, 31, 0} // DARK GREEN #define WALL_AUTO_DOOR_LOCKED_COLOR rgb_t{0, 63, 0} // GREEN #define WALL_ILLUSION_COLOR rgb_t{63, 0, 63} // PURPLE #define TRIGGER_COLOR BM_XRGB( 63/2 , 63/2 , 0/2) // YELLOW // ---------------------------------------------------------------------------------------------------------------- // Draws special walls (for now these are just removable walls.) static void draw_special_wall(const vcsegptr_t seg, int side ) { auto &w = *vcwallptr(seg->sides[side].wall_num); const auto get_color = [=]() { const auto type = w.type; if (type != WALL_OPEN) { const auto flags = w.flags; if (flags & WALL_DOOR_LOCKED) return (flags & WALL_DOOR_AUTO) ? WALL_AUTO_DOOR_LOCKED_COLOR : WALL_DOOR_LOCKED_COLOR; if (flags & WALL_DOOR_AUTO) return WALL_AUTO_DOOR_COLOR; if (type == WALL_BLASTABLE) return WALL_BLASTABLE_COLOR; if (type == WALL_DOOR) return WALL_DOOR_COLOR; if (type == WALL_ILLUSION) return WALL_ILLUSION_COLOR; } return rgb_t{45, 45, 45}; }; const auto color = get_color(); draw_wall_side(seg,side, gr_find_closest_color(color.r, color.g, color.b)); if (w.trigger != trigger_none) { draw_trigger_side(seg,side, TRIGGER_COLOR); } } // ---------------------------------------------------------------------------------------------------------------- // Recursively parse mine structure, drawing segments. static void draw_mine_sub(const vsegptridx_t segnum,int depth, visited_segment_bitarray_t &visited) { if (visited[segnum]) return; // If segment already drawn, return. visited[segnum] = true; // Say that this segment has been drawn. auto mine_ptr = segnum; // If this segment is active, process it, else skip it. if (mine_ptr->segnum != segment_none) { int side; if (Search_mode) check_segment(mine_ptr); else add_edges(mine_ptr); //add this segments edges to list if (depth != 0) { for (side=0; sidechildren[side]; if (IS_CHILD(child_segnum)) { if (mine_ptr->sides[side].wall_num != wall_none) draw_special_wall(mine_ptr, side); draw_mine_sub(segnum.absolute_sibling(child_segnum), depth-1, visited); } } } } } static void draw_mine_edges(int automap_flag) { int i,type; seg_edge *e; for (type=ET_NOTUSED;type>=ET_FACING;type--) { const auto color = edge_colors[type]; for (i=0;itype == type) if ((!automap_flag) || (e->face_count == 1)) draw_line(e->v.n.v0, e->v.n.v1, color); } } } //draws an entire mine static void draw_mine(const vsegptridx_t mine_ptr,int depth) { int i; visited_segment_bitarray_t visited; edge_list_size = min(Num_segments * 12, MAX_EDGES); //make maybe smaller than max // clear edge list for (i=0; isegnum != segment_none) { for (i=0; isides[i].wall_num != wall_none) draw_special_wall(segp, i); if (Search_mode) check_segment(segp); else { add_edges(segp); draw_seg_objects(segp); } } } draw_mine_edges(automap_flag); } static void draw_listed_segments(count_segment_array_t &s, const uint8_t color) { range_for (const auto &ss, s) { const auto &&segp = vcsegptr(ss); if (segp->segnum != segment_none) draw_segment(segp, color); } } static void draw_selected_segments(void) { draw_listed_segments(Selected_segs, SELECT_COLOR); } static void draw_found_segments(void) { draw_listed_segments(Found_segs, FOUND_COLOR); } static void draw_warning_segments(void) { draw_listed_segments(Warning_segs, WARNING_COLOR); } static void draw_group_segments(void) { if (current_group > -1) { draw_listed_segments(GroupList[current_group].segments, GROUP_COLOR); } } static void draw_special_segments(void) { // Highlight matcens, fuelcens, etc. range_for (const auto &&segp, vcsegptr) { if (segp->segnum != segment_none) { unsigned r, g, b; switch(segp->special) { case SEGMENT_IS_FUELCEN: r = 29 * 2, g = 27 * 2, b = 13 * 2; break; case SEGMENT_IS_CONTROLCEN: r = 29 * 2, g = 0, b = 0; break; case SEGMENT_IS_ROBOTMAKER: r = 29 * 2, g = 0, b = 31 * 2; break; default: continue; } const auto color = gr_find_closest_color(r, g, b); draw_segment(segp, color); } } } //find a free vertex. returns the vertex number static int alloc_vert() { int vn; Assert(Num_vertices < MAX_SEGMENT_VERTICES); for (vn=0; (vn < Num_vertices) && Vertex_active[vn]; vn++) ; Vertex_active[vn] = 1; Num_vertices++; return vn; } //frees a vertex static void free_vert(int vert_num) { Vertex_active[vert_num] = 0; Num_vertices--; } // ----------------------------------------------------------------------------- static void draw_coordinate_axes(void) { int i; array Axes_verts; vms_vector tvec; for (i=0; i<16; i++) Axes_verts[i] = alloc_vert(); create_coordinate_axes_from_segment(Cursegp,Axes_verts); const auto xvec = vm_vec_sub(Vertices[Axes_verts[1]],Vertices[Axes_verts[0]]); const auto yvec = vm_vec_sub(Vertices[Axes_verts[2]],Vertices[Axes_verts[0]]); const auto zvec = vm_vec_sub(Vertices[Axes_verts[3]],Vertices[Axes_verts[0]]); // Create the letter X tvec = xvec; vm_vec_add(Vertices[Axes_verts[4]],Vertices[Axes_verts[1]], vm_vec_scale(tvec,F1_0/16)); tvec = yvec; vm_vec_add2(Vertices[Axes_verts[4]], vm_vec_scale(tvec,F1_0/8)); vm_vec_sub(Vertices[Axes_verts[6]],Vertices[Axes_verts[4]], vm_vec_scale(tvec,F2_0)); tvec = xvec; vm_vec_scale(tvec,F1_0/8); vm_vec_add(Vertices[Axes_verts[7]],Vertices[Axes_verts[4]],tvec); vm_vec_add(Vertices[Axes_verts[5]],Vertices[Axes_verts[6]],tvec); // Create the letter Y tvec = yvec; vm_vec_add(Vertices[Axes_verts[11]],Vertices[Axes_verts[2]], vm_vec_scale(tvec,F1_0/16)); vm_vec_add(Vertices[Axes_verts[8]],Vertices[Axes_verts[11]],tvec); vm_vec_add(Vertices[Axes_verts[9]],Vertices[Axes_verts[11]], vm_vec_scale(tvec,F1_0*2)); vm_vec_add(Vertices[Axes_verts[10]],Vertices[Axes_verts[11]],tvec); tvec = xvec; vm_vec_scale(tvec,F1_0/16); vm_vec_sub2(Vertices[Axes_verts[9]],tvec); vm_vec_add2(Vertices[Axes_verts[10]],tvec); // Create the letter Z tvec = zvec; vm_vec_add(Vertices[Axes_verts[12]],Vertices[Axes_verts[3]],vm_vec_scale(tvec,F1_0/16)); tvec = yvec; vm_vec_add2(Vertices[Axes_verts[12]], vm_vec_scale(tvec,F1_0/8)); vm_vec_sub(Vertices[Axes_verts[14]],Vertices[Axes_verts[12]], vm_vec_scale(tvec,F2_0)); tvec = zvec; vm_vec_scale(tvec,F1_0/8); vm_vec_add(Vertices[Axes_verts[13]],Vertices[Axes_verts[12]],tvec); vm_vec_add(Vertices[Axes_verts[15]],Vertices[Axes_verts[14]],tvec); rotate_list(Axes_verts); const uint8_t color = AXIS_COLOR; draw_line(Axes_verts[0], Axes_verts[1], color); draw_line(Axes_verts[0], Axes_verts[2], color); draw_line(Axes_verts[0], Axes_verts[3], color); // draw the letter X draw_line(Axes_verts[4], Axes_verts[5], color); draw_line(Axes_verts[6], Axes_verts[7], color); // draw the letter Y draw_line(Axes_verts[8], Axes_verts[9], color); draw_line(Axes_verts[8], Axes_verts[10], color); draw_line(Axes_verts[8], Axes_verts[11], color); // draw the letter Z draw_line(Axes_verts[12], Axes_verts[13], color); draw_line(Axes_verts[13], Axes_verts[14], color); draw_line(Axes_verts[14], Axes_verts[15], color); for (i=0; i<16; i++) free_vert(Axes_verts[i]); } void draw_world(grs_canvas *screen_canvas,editor_view *v,const vsegptridx_t mine_ptr,int depth) { vms_vector viewer_position; gr_set_current_canvas(screen_canvas); //g3_set_points(Segment_points,Vertices); viewer_position = v->ev_matrix.fvec; vm_vec_scale(viewer_position,-v->ev_dist); vm_vec_add2(viewer_position,Ed_view_target); gr_clear_canvas(0); g3_start_frame(); g3_set_view_matrix(viewer_position,v->ev_matrix,v->ev_zoom); render_start_frame(); // Draw all segments or only connected segments. // We might want to draw all segments if we have broken the mine into pieces. if (Draw_all_segments) draw_mine_all(Automap_test); else draw_mine(mine_ptr,depth); // Draw the found segments if (!Automap_test) { draw_warning_segments(); draw_group_segments(); draw_found_segments(); draw_selected_segments(); draw_special_segments(); // Highlight group segment and side. if (current_group > -1) if (Groupsegp[current_group]) { draw_segment(vcsegptr(Groupsegp[current_group]), GROUPSEG_COLOR); draw_seg_side(vcsegptr(Groupsegp[current_group]), Groupside[current_group], GROUPSIDE_COLOR); } // Highlight marked segment and side. if (Markedsegp) { draw_segment(Markedsegp, MARKEDSEG_COLOR); draw_seg_side(Markedsegp,Markedside, MARKEDSIDE_COLOR); } // Highlight current segment and current side. draw_segment(Cursegp, CURSEG_COLOR); draw_seg_side(Cursegp,Curside, CURSIDE_COLOR); draw_side_edge(Cursegp,Curside,Curedge, CUREDGE_COLOR); // Draw coordinate axes if we are rendering the large view. if (Show_axes_flag) if (screen_canvas == LargeViewBox->canvas.get()) draw_coordinate_axes(); // Label the window gr_set_fontcolor((v==current_view)?CRED:CWHITE, -1 ); if ( screen_canvas == LargeViewBox->canvas.get() ) { gr_ustring( 5, 5, "USER VIEW" ); switch (Large_view_index) { case 0: gr_ustring( 85, 5, "-- TOP"); break; case 1: gr_ustring( 85, 5, "-- FRONT"); break; case 2: gr_ustring( 85, 5, "-- RIGHT"); break; } } else #if ORTHO_VIEWS else if ( screen_canvas == TopViewBox->canvas ) gr_ustring( 5, 5, "TOP" ); else if ( screen_canvas == FrontViewBox->canvas ) gr_ustring( 5, 5, "FRONT" ); else if ( screen_canvas == RightViewBox->canvas ) gr_ustring( 5, 5, "RIGHT" ); #else Error("Ortho views have been removed, what gives?\n"); #endif } g3_end_frame(); } //find the segments that render at a given screen x,y //parms other than x,y are like draw_world //fills in globals N_found_segs & Found_segs void find_segments(short x,short y,grs_canvas *screen_canvas,editor_view *v,const vsegptridx_t mine_ptr,int depth) { vms_vector viewer_position; gr_set_current_canvas(screen_canvas); //g3_set_points(Segment_points,Vertices); viewer_position = v->ev_matrix.fvec; vm_vec_scale(viewer_position,-v->ev_dist); vm_vec_add2(viewer_position,Ed_view_target); g3_start_frame(); g3_set_view_matrix(viewer_position,v->ev_matrix,v->ev_zoom); render_start_frame(); #ifdef OGL g3_end_frame(); #endif uint8_t color = 0; gr_pixel(x,y, color); //set our search pixel to color zero #ifdef OGL g3_start_frame(); #endif Search_mode = -1; Found_segs.clear(); Search_x = x; Search_y = y; if (Draw_all_segments) draw_mine_all(0); else draw_mine(mine_ptr,depth); g3_end_frame(); Search_mode = 0; } namespace dsx { void meddraw_init_views( grs_canvas * canvas) { #if defined(DXX_BUILD_DESCENT_II) // sticking these here so the correct D2 colors are used edge_colors[0] = BM_XRGB(45/2,45/2,45/2); edge_colors[1] = BM_XRGB(45/3,45/3,45/3); //BM_RGB(0,0,45), // edge_colors[2] = BM_XRGB(45/4,45/4,45/4); //BM_RGB(0,45,0)}; // #endif Views[0]->ev_canv = canvas; #if ORTHO_VIEWS Views[1]->ev_canv = TopViewBox->canvas; Views[2]->ev_canv = FrontViewBox->canvas; Views[3]->ev_canv = RightViewBox->canvas; #endif } }