/* * Portions of this file are copyright Rebirth contributors and licensed as * described in COPYING.txt. * Portions of this file are copyright Parallax Software and licensed * according to the Parallax license below. * See COPYING.txt for license details. THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE. COPYRIGHT 1993-1998 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED. */ #include #include "rle.h" #include "compiler-array.h" // John's new stuff below here.... static int scale_error_term; static int scale_initial_pixel_count; static int scale_adj_up; static int scale_adj_down; static int scale_final_pixel_count; static int scale_ydelta_minus_1; static int scale_whole_step; static void rls_stretch_scanline_setup( int XDelta, int YDelta ); static void rls_stretch_scanline(const uint8_t *, uint8_t *); static void decode_row(const grs_bitmap &bmp, array &scale_rle_data, unsigned y) { int offset=4+bmp.bm_h; for (int i=0; i scale_rle_data; for (int y=y0; y<=y1; y++ ) { if ( f2i(v) != last_row ) { last_row = f2i(v); decode_row(source_bmp, scale_rle_data, last_row ); } rls_stretch_scanline(&scale_rle_data[f2i(u0)], &dest_bmp.bm_data[dest_bmp.bm_rowsize*y+x0]); v += dv; } } static void rls_stretch_scanline_setup( int XDelta, int YDelta ) { scale_ydelta_minus_1 = YDelta - 1; /* X major line */ /* Minimum # of pixels in a run in this line */ scale_whole_step = XDelta / YDelta; /* Error term adjust each time Y steps by 1; used to tell when one extra pixel should be drawn as part of a run, to account for fractional steps along the X axis per 1-pixel steps along Y */ scale_adj_up = (XDelta % YDelta) * 2; /* Error term adjust when the error term turns over, used to factor out the X step made at that time */ scale_adj_down = YDelta * 2; /* Initial error term; reflects an initial step of 0.5 along the Y axis */ scale_error_term = (XDelta % YDelta) - (YDelta * 2); /* The initial and last runs are partial, because Y advances only 0.5 for these runs, rather than 1. Divide one full run, plus the initial pixel, between the initial and last runs */ scale_initial_pixel_count = (scale_whole_step / 2) + 1; scale_final_pixel_count = scale_initial_pixel_count; /* If the basic run length is even and there's no fractional advance, we have one pixel that could go to either the initial or last partial run, which we'll arbitrarily allocate to the last run */ if ((scale_adj_up == 0) && ((scale_whole_step & 0x01) == 0)) { scale_initial_pixel_count--; } /* If there're an odd number of pixels per run, we have 1 pixel that can't be allocated to either the initial or last partial run, so we'll add 0.5 to error term so this pixel will be handled by the normal full-run loop */ if ((scale_whole_step & 0x01) != 0) { scale_error_term += YDelta; } } static void rls_stretch_scanline(const uint8_t *scale_source_ptr, uint8_t *scale_dest_ptr) { ubyte c, *dest_ptr; int len, ErrorTerm, initial_count, final_count; // Draw the first, partial run of pixels auto src_ptr = scale_source_ptr; dest_ptr = scale_dest_ptr; ErrorTerm = scale_error_term; initial_count = scale_initial_pixel_count; final_count = scale_final_pixel_count; c = *src_ptr++; if ( c != TRANSPARENCY_COLOR ) { for (int i=0; i 0) { len++; ErrorTerm -= scale_adj_down; // reset the error term } // Draw this run o' pixels c = *src_ptr++; if ( c != TRANSPARENCY_COLOR ) { for (int i=len; i>0; i-- ) *dest_ptr++ = c; } else { dest_ptr += len; } } // Draw the final run of pixels c = *src_ptr++; if ( c != TRANSPARENCY_COLOR ) { for (int i=0; i> 16]; if (c != TRANSPARENCY_COLOR) *dbits = c; dbits++; u += du; } } } static void scale_row_transparent(const array &sbits, ubyte * dbits, int width, fix u, fix du ) { ubyte c; ubyte *dbits_end = &dbits[width-1]; if ( du < F1_0 ) { // Scaling up. fix next_u; int next_u_int; next_u_int = f2i(u)+1; c = sbits[ next_u_int ]; next_u = i2f(next_u_int); if ( c != TRANSPARENCY_COLOR ) goto NonTransparent; Transparent: while (1) { dbits++; if ( dbits > dbits_end ) return; u += du; if ( u > next_u ) { next_u_int = f2i(u)+1; c = sbits[ next_u_int ]; next_u = i2f(next_u_int); if ( c != TRANSPARENCY_COLOR ) goto NonTransparent; } } return; NonTransparent: while (1) { *dbits++ = c; if ( dbits > dbits_end ) return; u += du; if ( u > next_u ) { next_u_int = f2i(u)+1; c = sbits[ next_u_int ]; next_u = i2f(next_u_int); if ( c == TRANSPARENCY_COLOR ) goto Transparent; } } return; } else { for ( int i=0; i= 0); //Int3(); //this should be checked in higher-level routine return; } array scale_rle_data; for (int y=y0; y<=y1; y++ ) { if ( f2i(v) != last_row ) { last_row = f2i(v); decode_row(source_bmp, scale_rle_data, last_row ); } scale_row_transparent( scale_rle_data, &dest_bmp.bm_data[dest_bmp.bm_rowsize*y+x0], x1-x0+1, u0, du ); v += dv; } } #define FIND_SCALED_NUM(x,x0,x1,y0,y1) (fixmuldiv((x)-(x0),(y1)-(y0),(x1)-(x0))+(y0)) // Scales bitmap, bp, into vertbuf[0] to vertbuf[1] void scale_bitmap(grs_bitmap *bp, const array &vertbuf, int orientation ) { grs_bitmap * dbp = &grd_curcanv->cv_bitmap; fix x0, y0, x1, y1; fix u0, v0, u1, v1; fix clipped_x0, clipped_y0, clipped_x1, clipped_y1; fix clipped_u0, clipped_v0, clipped_u1, clipped_v1; fix xmin, xmax, ymin, ymax; int dx0, dy0, dx1, dy1; int dtemp; // Set initial variables.... x0 = vertbuf[0].x; y0 = vertbuf[0].y; x1 = vertbuf[2].x; y1 = vertbuf[2].y; xmin = 0; ymin = 0; xmax = i2f(dbp->bm_w)-fl2f(.5); ymax = i2f(dbp->bm_h)-fl2f(.5); u0 = i2f(0); v0 = i2f(0); u1 = i2f(bp->bm_w-1); v1 = i2f(bp->bm_h-1); // Check for obviously offscreen bitmaps... if ( (y1<=y0) || (x1<=x0) ) return; if ( (x1<0 ) || (x0>=xmax) ) return; if ( (y1<0 ) || (y0>=ymax) ) return; clipped_u0 = u0; clipped_v0 = v0; clipped_u1 = u1; clipped_v1 = v1; clipped_x0 = x0; clipped_y0 = y0; clipped_x1 = x1; clipped_y1 = y1; // Clip the left, moving u0 right as necessary if ( x0 < xmin ) { clipped_u0 = FIND_SCALED_NUM(xmin,x0,x1,u0,u1); clipped_x0 = xmin; } // Clip the right, moving u1 left as necessary if ( x1 > xmax ) { clipped_u1 = FIND_SCALED_NUM(xmax,x0,x1,u0,u1); clipped_x1 = xmax; } // Clip the top, moving v0 down as necessary if ( y0 < ymin ) { clipped_v0 = FIND_SCALED_NUM(ymin,y0,y1,v0,v1); clipped_y0 = ymin; } // Clip the bottom, moving v1 up as necessary if ( y1 > ymax ) { clipped_v1 = FIND_SCALED_NUM(ymax,y0,y1,v0,v1); clipped_y1 = ymax; } dx0 = f2i(clipped_x0); dx1 = f2i(clipped_x1); dy0 = f2i(clipped_y0); dy1 = f2i(clipped_y1); if (dx1<=dx0) return; if (dy1<=dy0) return; dtemp = f2i(clipped_u1)-f2i(clipped_u0); if ( bp->bm_flags & BM_FLAG_RLE ) { if ( (dtemp < (f2i(clipped_x1)-f2i(clipped_x0))) && (dtemp>0) ) scale_up_bitmap_rle(*bp, *dbp, dx0, dy0, dx1, dy1, clipped_u0, clipped_v0, clipped_u1, clipped_v1, orientation ); else scale_bitmap_c_rle(*bp, *dbp, dx0, dy0, dx1, dy1, clipped_u0, clipped_v0, clipped_u1, clipped_v1, orientation ); } else { if ( (dtemp < (f2i(clipped_x1)-f2i(clipped_x0))) && (dtemp>0) ) scale_up_bitmap(*bp, *dbp, dx0, dy0, dx1, dy1, clipped_u0, clipped_v0, clipped_u1, clipped_v1, orientation ); else scale_bitmap_c(*bp, *dbp, dx0, dy0, dx1, dy1, clipped_u0, clipped_v0, clipped_u1, clipped_v1, orientation ); } }