/* * Portions of this file are copyright Rebirth contributors and licensed as * described in COPYING.txt. * Portions of this file are copyright Parallax Software and licensed * according to the Parallax license below. * See COPYING.txt for license details. THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE. COPYRIGHT 1993-1998 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED. */ /* * * u,v coordinate computation for segment faces * */ #include #include #include #include #include #include "inferno.h" #include "segment.h" #include "editor/editor.h" #include "editor/esegment.h" #include "gameseg.h" #include "maths.h" #include "dxxerror.h" #include "wall.h" #include "editor/kdefs.h" #include "bm.h" // Needed for TmapInfo #include "effects.h" // Needed for effects_bm_num #include "fvi.h" #include "seguvs.h" #include "compiler-range_for.h" #include "highest_valid.h" static void cast_all_light_in_mine(int quick_flag); //--rotate_uvs-- vms_vector Rightvec; #define MAX_LIGHT_SEGS 16 // --------------------------------------------------------------------------------------------- // Scan all polys in all segments, return average light value for vnum. // segs = output array for segments containing vertex, terminated by -1. static fix get_average_light_at_vertex(int vnum, segnum_t *segs) { int sidenum; fix total_light; int num_occurrences; // #ifndef NDEBUG //Removed this ifdef because the version of Assert that I used to get it to compile doesn't work without this symbol. -KRB segnum_t *original_segs; original_segs = segs; // #endif num_occurrences = 0; total_light = 0; range_for (const auto segnum, highest_valid(Segments)) { const auto &&segp = vcsegptr(static_cast(segnum)); auto e = end(segp->verts); auto relvnum = std::distance(std::find(begin(segp->verts), e, vnum), e); if (relvnum < MAX_VERTICES_PER_SEGMENT) { *segs++ = segnum; Assert(segs - original_segs < MAX_LIGHT_SEGS); (void)original_segs; for (sidenum=0; sidenum < MAX_SIDES_PER_SEGMENT; sidenum++) { if (!IS_CHILD(segp->children[sidenum])) { const auto sidep = &segp->sides[sidenum]; auto &vp = Side_to_verts[sidenum]; const auto vb = begin(vp); const auto ve = end(vp); const auto vi = std::find(vb, ve, relvnum); if (vi != ve) { const auto v = std::distance(vb, vi); total_light += sidep->uvls[v].l; num_occurrences++; } } // end if } // end sidenum } } // end segnum *segs = segment_none; if (num_occurrences) return total_light/num_occurrences; else return 0; } static void set_average_light_at_vertex(int vnum) { int relvnum, sidenum; segnum_t Segment_indices[MAX_LIGHT_SEGS]; int segind; fix average_light; average_light = get_average_light_at_vertex(vnum, Segment_indices); if (!average_light) return; segind = 0; while (Segment_indices[segind] != segment_none) { auto segnum = Segment_indices[segind++]; segment *segp = &Segments[segnum]; for (relvnum=0; relvnumverts[relvnum] == vnum) break; if (relvnum < MAX_VERTICES_PER_SEGMENT) { for (sidenum=0; sidenum < MAX_SIDES_PER_SEGMENT; sidenum++) { if (!IS_CHILD(segp->children[sidenum])) { const auto sidep = &segp->sides[sidenum]; auto &vp = Side_to_verts[sidenum]; const auto vb = begin(vp); const auto ve = end(vp); const auto vi = std::find(vb, ve, relvnum); if (vi != ve) { const auto v = std::distance(vb, vi); sidep->uvls[v].l = average_light; } } // end if } // end sidenum } // end if } // end while Update_flags |= UF_WORLD_CHANGED; } static void set_average_light_on_side(const vsegptr_t segp, int sidenum) { if (!IS_CHILD(segp->children[sidenum])) range_for (const auto v, Side_to_verts[sidenum]) { set_average_light_at_vertex(segp->verts[v]); } } int set_average_light_on_curside(void) { set_average_light_on_side(Cursegp, Curside); return 0; } int set_average_light_on_all(void) { Doing_lighting_hack_flag = 1; cast_all_light_in_mine(0); Doing_lighting_hack_flag = 0; Update_flags |= UF_WORLD_CHANGED; // int seg, side; // for (seg=0; seg<=Highest_segment_index; seg++) // for (side=0; sideuvls[v].u; vc += sidep->uvls[v].v; } uc /= 4; vc /= 4; uc = uc & 0xffff0000; vc = vc & 0xffff0000; for (v=0; v<4; v++) { sidep->uvls[v].u -= uc; sidep->uvls[v].v -= vc; } } // --------------------------------------------------------------------------------------------- static void compress_uv_coordinates_on_side(side *sidep) { compress_uv_coordinates(sidep); } // --------------------------------------------------------------------------------------------- static void validate_uv_coordinates_on_side(const vsegptr_t segp, int sidenum) { // int v; // fix uv_dist,threed_dist; // vms_vector tvec; // fix dist_ratios[MAX_VERTICES_PER_POLY]; side *sidep = &segp->sides[sidenum]; // sbyte *vp = Side_to_verts[sidenum]; compress_uv_coordinates_on_side(sidep); } static void assign_default_lighting_on_side(const vsegptr_t segp, int sidenum) { int v; side *sidep = &segp->sides[sidenum]; for (v=0; v<4; v++) sidep->uvls[v].l = DEFAULT_LIGHTING; } static void assign_default_lighting(const vsegptr_t segp) { int sidenum; for (sidenum=0; sidenum(seg)); if (segp->segnum != segment_none) assign_default_lighting(segp); } } // --------------------------------------------------------------------------------------------- static void validate_uv_coordinates(const vsegptr_t segp) { int s; for (s=0; s &uvls) { int v; side *sidep = &segp->sides[sidenum]; for (v=0; v<4; v++) sidep->uvls[v] = uvls[v]; } #ifdef __WATCOMC__ fix zhypot(fix a,fix b); #pragma aux zhypot parm [eax] [ebx] value [eax] modify [eax ebx ecx edx] = \ "imul eax" \ "xchg eax,ebx" \ "mov ecx,edx" \ "imul eax" \ "add eax,ebx" \ "adc edx,ecx" \ "call quad_sqrt"; #else static fix zhypot(fix a,fix b) { double x = (double)a / 65536; double y = (double)b / 65536; return (long)(sqrt(x * x + y * y) * 65536); } #endif // --------------------------------------------------------------------------------------------- // Assign lighting value to side, a function of the normal vector. void assign_light_to_side(side &s) { range_for (auto &v, s.uvls) v.l = DEFAULT_LIGHTING; } fix Stretch_scale_x = F1_0; fix Stretch_scale_y = F1_0; // --------------------------------------------------------------------------------------------- // Given u,v coordinates at two vertices, assign u,v coordinates to other two vertices on a side. // (Actually, assign them to the coordinates in the faces.) // va, vb = face-relative vertex indices corresponding to uva, uvb. Ie, they are always in 0..3 and should be looked up in // Side_to_verts[side] to get the segment relative index. static void assign_uvs_to_side(const vsegptridx_t segp, int sidenum, uvl *uva, uvl *uvb, int va, int vb) { int vlo,vhi,v0,v1,v2,v3; array uvls; uvl ruvmag,fuvmag,uvlo,uvhi; fix fmag,mag01; Assert( (va<4) && (vb<4) ); Assert((abs(va - vb) == 1) || (abs(va - vb) == 3)); // make sure the verticies specify an edge auto &vp = Side_to_verts[sidenum]; // We want vlo precedes vhi, ie vlo < vhi, or vlo = 3, vhi = 0 if (va == ((vb + 1) % 4)) { // va = vb + 1 vlo = vb; vhi = va; uvlo = *uvb; uvhi = *uva; } else { vlo = va; vhi = vb; uvlo = *uva; uvhi = *uvb; } Assert(((vlo+1) % 4) == vhi); // If we are on an edge, then uvhi is one more than uvlo (mod 4) uvls[vlo] = uvlo; uvls[vhi] = uvhi; // Now we have vlo precedes vhi, compute vertices ((vhi+1) % 4) and ((vhi+2) % 4) // Assign u,v scale to a unit length right vector. fmag = zhypot(uvhi.v - uvlo.v,uvhi.u - uvlo.u); if (fmag < 64) { // this is a fix, so 64 = 1/1024 ruvmag.u = F1_0*256; ruvmag.v = F1_0*256; fuvmag.u = F1_0*256; fuvmag.v = F1_0*256; } else { ruvmag.u = uvhi.v - uvlo.v; ruvmag.v = uvlo.u - uvhi.u; fuvmag.u = uvhi.u - uvlo.u; fuvmag.v = uvhi.v - uvlo.v; } v0 = segp->verts[vp[vlo]]; v1 = segp->verts[vp[vhi]]; v2 = segp->verts[vp[(vhi+1)%4]]; v3 = segp->verts[vp[(vhi+2)%4]]; // Compute right vector by computing orientation matrix from: // forward vector = vlo:vhi // right vector = vlo:(vhi+2) % 4 const auto &vv1v0 = vm_vec_sub(Vertices[v1], Vertices[v0]); mag01 = vm_vec_mag(vv1v0); mag01 = fixmul(mag01, (va == 0 || va == 2) ? Stretch_scale_x : Stretch_scale_y); if (unlikely(mag01 < F1_0/1024)) editor_status_fmt("U, V bogosity in segment #%hu, probably on side #%i. CLEAN UP YOUR MESS!", (unsigned short)(segp), sidenum); else { struct frvec { vms_vector fvec, rvec; frvec(const vms_vector &tfvec, const vms_vector &trvec) { if ((tfvec.x == 0 && tfvec.y == 0 && tfvec.z == 0) || (trvec.x == 0 && trvec.y == 0 && trvec.z == 0)) { fvec = vmd_identity_matrix.fvec; rvec = vmd_identity_matrix.rvec; } else { const auto &m = vm_vector_2_matrix(tfvec, nullptr, &trvec); fvec = m.fvec; rvec = m.rvec; } vm_vec_negate(rvec); } }; const auto &vv3v0 = vm_vec_sub(Vertices[v3], Vertices[v0]); const frvec fr{ vv1v0, vv3v0 }; const auto assign_uvl = [&](const vms_vector &tvec, const uvl &uvb) { const auto drt = vm_vec_dot(fr.rvec, tvec); const auto dft = vm_vec_dot(fr.fvec, tvec); return uvl{ uvb.u + fixdiv(fixmul(ruvmag.u, drt), mag01) + fixdiv(fixmul(fuvmag.u, dft), mag01), uvb.v + fixdiv(fixmul(ruvmag.v, drt), mag01) + fixdiv(fixmul(fuvmag.v, dft), mag01), uvb.l }; }; uvls[(vhi+1)%4] = assign_uvl(vm_vec_sub(Vertices[v2],Vertices[v1]), uvhi); uvls[(vhi+2)%4] = assign_uvl(vv3v0, uvlo); copy_uvs_from_side_to_faces(segp, sidenum, uvls); } } int Vmag = VMAG; // ----------------------------------------------------------------------------------------------------------- // Assign default uvs to side. // This means: // v0 = 0,0 // v1 = k,0 where k is 3d size dependent // v2, v3 assigned by assign_uvs_to_side void assign_default_uvs_to_side(const vsegptridx_t segp,int side) { uvl uv0,uv1; uv0.u = 0; uv0.v = 0; auto &vp = Side_to_verts[side]; uv1.u = 0; uv1.v = Num_tilings * fixmul(Vmag, vm_vec_dist(Vertices[segp->verts[vp[1]]],Vertices[segp->verts[vp[0]]])); assign_uvs_to_side(segp, side, &uv0, &uv1, 0, 1); } // ----------------------------------------------------------------------------------------------------------- // Assign default uvs to side. // This means: // v0 = 0,0 // v1 = k,0 where k is 3d size dependent // v2, v3 assigned by assign_uvs_to_side void stretch_uvs_from_curedge(const vsegptridx_t segp, int side) { uvl uv0,uv1; int v0, v1; v0 = Curedge; v1 = (v0 + 1) % 4; uv0.u = segp->sides[side].uvls[v0].u; uv0.v = segp->sides[side].uvls[v0].v; uv1.u = segp->sides[side].uvls[v1].u; uv1.v = segp->sides[side].uvls[v1].v; assign_uvs_to_side(segp, side, &uv0, &uv1, v0, v1); } // -------------------------------------------------------------------------------------------------------------- // Assign default uvs to a segment. void assign_default_uvs_to_segment(const vsegptridx_t segp) { int s; for (s=0; ssides[base_common_side].num_faces; f++) { // -- mk021394 -- face *fp = &base_seg->sides[base_common_side].faces[f]; // -- mk021394 -- for (p=0; pnum_polys; p++) { // -- mk021394 -- poly *pp = &fp->polys[p]; // -- mk021394 -- for (v=0; vnum_vertices; v++) // -- mk021394 -- if (pp->verts[v] == v1) { // -- mk021394 -- *ff = f; // -- mk021394 -- *vv = v; // -- mk021394 -- *pi = p; // -- mk021394 -- return; // -- mk021394 -- } // -- mk021394 -- } // -- mk021394 -- } // -- mk021394 -- // -- mk021394 -- Assert(0); // Error -- Couldn't find face:vertex which matched vertex v1 on base_seg:base_common_side // -- mk021394 -- } // -- mk021394 -- // -------------------------------------------------------------------------------------------------------------- // -- mk021394 -- // Find the vertex index in base_seg:base_common_side which is segment relative vertex v1 // -- mk021394 -- // This very specific routine is subsidiary to med_assign_uvs_to_side. // -- mk021394 -- void get_side_vert(segment *base_seg,int base_common_side,int v1,int *vv) // -- mk021394 -- { // -- mk021394 -- int p,f,v; // -- mk021394 -- // -- mk021394 -- Assert((base_seg->sides[base_common_side].tri_edge == 0) || (base_seg->sides[base_common_side].tri_edge == 1)); // -- mk021394 -- Assert(base_seg->sides[base_common_side].num_faces <= 2); // -- mk021394 -- // -- mk021394 -- for (f=0; fsides[base_common_side].num_faces; f++) { // -- mk021394 -- face *fp = &base_seg->sides[base_common_side].faces[f]; // -- mk021394 -- for (p=0; pnum_polys; p++) { // -- mk021394 -- poly *pp = &fp->polys[p]; // -- mk021394 -- for (v=0; vnum_vertices; v++) // -- mk021394 -- if (pp->verts[v] == v1) { // -- mk021394 -- if (pp->num_vertices == 4) { // -- mk021394 -- *vv = v; // -- mk021394 -- return; // -- mk021394 -- } // -- mk021394 -- // -- mk021394 -- if (base_seg->sides[base_common_side].tri_edge == 0) { // triangulated 012, 023, so if f==0, *vv = v, if f==1, *vv = v if v=0, else v+1 // -- mk021394 -- if ((f == 1) && (v > 0)) // -- mk021394 -- v++; // -- mk021394 -- *vv = v; // -- mk021394 -- return; // -- mk021394 -- } else { // triangulated 013, 123 // -- mk021394 -- if (f == 0) { // -- mk021394 -- if (v == 2) // -- mk021394 -- v++; // -- mk021394 -- } else // -- mk021394 -- v++; // -- mk021394 -- *vv = v; // -- mk021394 -- return; // -- mk021394 -- } // -- mk021394 -- } // -- mk021394 -- } // -- mk021394 -- } // -- mk021394 -- // -- mk021394 -- Assert(0); // Error -- Couldn't find face:vertex which matched vertex v1 on base_seg:base_common_side // -- mk021394 -- } //--rotate_uvs-- // -------------------------------------------------------------------------------------------------------------- //--rotate_uvs-- // Rotate uvl coordinates uva, uvb about their center point by heading //--rotate_uvs-- void rotate_uvs(uvl *uva, uvl *uvb, vms_vector *rvec) //--rotate_uvs-- { //--rotate_uvs-- uvl uvc, uva1, uvb1; //--rotate_uvs-- //--rotate_uvs-- uvc.u = (uva->u + uvb->u)/2; //--rotate_uvs-- uvc.v = (uva->v + uvb->v)/2; //--rotate_uvs-- //--rotate_uvs-- uva1.u = fixmul(uva->u - uvc.u, rvec->x) - fixmul(uva->v - uvc.v, rvec->z); //--rotate_uvs-- uva1.v = fixmul(uva->u - uvc.u, rvec->z) + fixmul(uva->v - uvc.v, rvec->x); //--rotate_uvs-- //--rotate_uvs-- uva->u = uva1.u + uvc.u; //--rotate_uvs-- uva->v = uva1.v + uvc.v; //--rotate_uvs-- //--rotate_uvs-- uvb1.u = fixmul(uvb->u - uvc.u, rvec->x) - fixmul(uvb->v - uvc.v, rvec->z); //--rotate_uvs-- uvb1.v = fixmul(uvb->u - uvc.u, rvec->z) + fixmul(uvb->v - uvc.v, rvec->x); //--rotate_uvs-- //--rotate_uvs-- uvb->u = uvb1.u + uvc.u; //--rotate_uvs-- uvb->v = uvb1.v + uvc.v; //--rotate_uvs-- } // -------------------------------------------------------------------------------------------------------------- void med_assign_uvs_to_side(const vsegptridx_t con_seg, int con_common_side, const vsegptr_t base_seg, int base_common_side, int abs_id1, int abs_id2) { uvl uv1,uv2; int v,bv1,bv2, vv1, vv2; int cv1=0, cv2=0; bv1 = -1; bv2 = -1; // Find which vertices in segment match abs_id1, abs_id2 for (v=0; vverts[v] == abs_id1) bv1 = v; if (base_seg->verts[v] == abs_id2) bv2 = v; if (con_seg->verts[v] == abs_id1) cv1 = v; if (con_seg->verts[v] == abs_id2) cv2 = v; } // Now, bv1, bv2 are segment relative vertices in base segment which are the same as absolute vertices abs_id1, abs_id2 // cv1, cv2 are segment relative vertices in conn segment which are the same as absolute vertices abs_id1, abs_id2 Assert((bv1 != -1) && (bv2 != -1) && (cv1 != -1) && (cv2 != -1)); // Now, scan 4 vertices in base side and 4 vertices in connected side. // Set uv1, uv2 to uv coordinates from base side which correspond to vertices bv1, bv2. // Set vv1, vv2 to relative vertex ids (in 0..3) in connecting side which correspond to cv1, cv2 vv1 = -1; vv2 = -1; for (v=0; v<4; v++) { if (bv1 == Side_to_verts[base_common_side][v]) uv1 = base_seg->sides[base_common_side].uvls[v]; if (bv2 == Side_to_verts[base_common_side][v]) uv2 = base_seg->sides[base_common_side].uvls[v]; if (cv1 == Side_to_verts[con_common_side][v]) vv1 = v; if (cv2 == Side_to_verts[con_common_side][v]) vv2 = v; } Assert((uv1.u != uv2.u) || (uv1.v != uv2.v)); Assert( (vv1 != -1) && (vv2 != -1) ); assign_uvs_to_side(con_seg, con_common_side, &uv1, &uv2, vv1, vv2); } // ----------------------------------------------------------------------------- // Given a base and a connecting segment, a side on each of those segments and two global vertex ids, // determine which side in each of the segments shares those two vertices. // This is used to propagate a texture map id to a connecting segment in an expected and desired way. // Since we can attach any side of a segment to any side of another segment, and do so in each case in // four different rotations (for a total of 6*6*4 = 144 ways), not having this nifty function will cause // great confusion. static void get_side_ids(const vsegptr_t base_seg, const vsegptr_t con_seg, int base_side, int con_side, int abs_id1, int abs_id2, int *base_common_side, int *con_common_side) { int v0,side; *base_common_side = -1; // Find side in base segment which contains the two global vertex ids. for (side=0; sideverts[(int) base_vp[v0]] == abs_id1) && (base_seg->verts[(int) base_vp[(v0+1) % 4]] == abs_id2)) || ((base_seg->verts[(int) base_vp[v0]] == abs_id2) && (base_seg->verts[(int)base_vp[ (v0+1) % 4]] == abs_id1))) { Assert(*base_common_side == -1); // This means two different sides shared the same edge with base_side == impossible! *base_common_side = side; } } } // Note: For connecting segment, process vertices in reversed order. *con_common_side = -1; // Find side in connecting segment which contains the two global vertex ids. for (side=0; sideverts[(int) con_vp[(v0 + 1) % 4]] == abs_id1) && (con_seg->verts[(int) con_vp[v0]] == abs_id2)) || ((con_seg->verts[(int) con_vp[(v0 + 1) % 4]] == abs_id2) && (con_seg->verts[(int) con_vp[v0]] == abs_id1))) { Assert(*con_common_side == -1); // This means two different sides shared the same edge with con_side == impossible! *con_common_side = side; } } } Assert((*base_common_side != -1) && (*con_common_side != -1)); } // ----------------------------------------------------------------------------- // Propagate texture map u,v coordinates from base_seg:base_side to con_seg:con_side. // The two vertices abs_id1 and abs_id2 are the only two vertices common to the two sides. // If uv_only_flag is 1, then don't assign texture map ids, only update the uv coordinates // If uv_only_flag is -1, then ONLY assign texture map ids, don't update the uv coordinates static void propagate_tmaps_to_segment_side(const vsegptridx_t base_seg, int base_side, const vsegptridx_t con_seg, int con_side, int abs_id1, int abs_id2, int uv_only_flag) { int base_common_side,con_common_side; int tmap_num; Assert ((uv_only_flag == -1) || (uv_only_flag == 0) || (uv_only_flag == 1)); // Set base_common_side = side in base_seg which contains edge abs_id1:abs_id2 // Set con_common_side = side in con_seg which contains edge abs_id1:abs_id2 if (base_seg != con_seg) get_side_ids(base_seg, con_seg, base_side, con_side, abs_id1, abs_id2, &base_common_side, &con_common_side); else { base_common_side = base_side; con_common_side = con_side; } // Now, all faces in con_seg which are on side con_common_side get their tmap_num set to whatever tmap is assigned // to whatever face I find which is on side base_common_side. // First, find tmap_num for base_common_side. If it doesn't exist (ie, there is a connection there), look at the segment // that is connected through it. if (!IS_CHILD(con_seg->children[con_common_side])) { if (!IS_CHILD(base_seg->children[base_common_side])) { // There is at least one face here, so get the tmap_num from there. tmap_num = base_seg->sides[base_common_side].tmap_num; // Now assign all faces in the connecting segment on side con_common_side to tmap_num. if ((uv_only_flag == -1) || (uv_only_flag == 0)) con_seg->sides[con_common_side].tmap_num = tmap_num; if (uv_only_flag != -1) med_assign_uvs_to_side(con_seg, con_common_side, base_seg, base_common_side, abs_id1, abs_id2); } else { // There are no faces here, there is a connection, trace through the connection. const auto &&csegp = vsegptridx(base_seg->children[base_common_side]); auto cside = find_connect_side(base_seg, csegp); propagate_tmaps_to_segment_side(csegp, cside, con_seg, con_side, abs_id1, abs_id2, uv_only_flag); } } } static const sbyte Edge_between_sides[MAX_SIDES_PER_SEGMENT][MAX_SIDES_PER_SEGMENT][2] = { // left top right bottom back front { {-1,-1}, { 3, 7}, {-1,-1}, { 2, 6}, { 6, 7}, { 2, 3} }, // left { { 3, 7}, {-1,-1}, { 0, 4}, {-1,-1}, { 4, 7}, { 0, 3} }, // top { {-1,-1}, { 0, 4}, {-1,-1}, { 1, 5}, { 4, 5}, { 0, 1} }, // right { { 2, 6}, {-1,-1}, { 1, 5}, {-1,-1}, { 5, 6}, { 1, 2} }, // bottom { { 6, 7}, { 4, 7}, { 4, 5}, { 5, 6}, {-1,-1}, {-1,-1} }, // back { { 2, 3}, { 0, 3}, { 0, 1}, { 1, 2}, {-1,-1}, {-1,-1} }}; // front // ----------------------------------------------------------------------------- // Propagate texture map u,v coordinates to base_seg:back_side from base_seg:some-other-side // There is no easy way to figure out which side is adjacent to another side along some edge, so we do a bit of searching. void med_propagate_tmaps_to_back_side(const vsegptridx_t base_seg, int back_side, int uv_only_flag) { int v1=0,v2=0; int s,ss,tmap_num,back_side_tmap; if (IS_CHILD(base_seg->children[back_side])) return; // connection, so no sides here. // Scan all sides, look for an occupied side which is not back_side or Side_opposite[back_side] for (s=0; sverts[v1], base_seg->verts[v2], uv_only_flag); // Assign an unused tmap id to the back side. // Note that this can get undone by the caller if this was not part of a new attach, but a rotation or a scale (which // both do attaches). // First see if tmap on back side is anywhere else. if (!uv_only_flag) { back_side_tmap = base_seg->sides[back_side].tmap_num; for (s=0; ssides[s].tmap_num == back_side_tmap) { for (tmap_num=0; tmap_num < MAX_SIDES_PER_SEGMENT; tmap_num++) { for (ss=0; sssides[ss].tmap_num == New_segment.sides[tmap_num].tmap_num) goto found2; // current texture map (tmap_num) is used on current (ss) side, so try next one // Current texture map (tmap_num) has not been used, assign to all faces on back_side. base_seg->sides[back_side].tmap_num = New_segment.sides[tmap_num].tmap_num; goto done1; found2: ; } } } done1: ; } } int fix_bogus_uvs_on_side(void) { med_propagate_tmaps_to_back_side(Cursegp, Curside, 1); return 0; } static void fix_bogus_uvs_on_side1(const vsegptridx_t sp, int sidenum, int uvonly_flag) { side *sidep = &sp->sides[sidenum]; if ((sidep->uvls[0].u == 0) && (sidep->uvls[1].u == 0) && (sidep->uvls[2].u == 0)) { med_propagate_tmaps_to_back_side(sp, sidenum, uvonly_flag); } } static void fix_bogus_uvs_seg(const vsegptridx_t segp) { int s; for (s=0; schildren[s])) fix_bogus_uvs_on_side1(segp, s, 1); } } int fix_bogus_uvs_all(void) { range_for (const auto seg, highest_valid(Segments)) { const auto &&segp = vsegptridx(static_cast(seg)); if (segp->segnum != segment_none) fix_bogus_uvs_seg(segp); } return 0; } // ----------------------------------------------------------------------------- // Segment base_seg is connected through side base_side to segment con_seg on con_side. // For all walls in con_seg, find the wall in base_seg which shares an edge. Copy tmap_num // from that side in base_seg to the wall in con_seg. If the wall in base_seg is not present // (ie, there is another segment connected through it), follow the connection through that // segment to get the wall in the connected segment which shares the edge, and get tmap_num from there. static void propagate_tmaps_to_segment_sides(const vsegptridx_t base_seg, int base_side, const vsegptridx_t con_seg, int con_side, int uv_only_flag) { int abs_id1,abs_id2; int v; auto &base_vp = Side_to_verts[base_side]; // Do for each edge on connecting face. for (v=0; v<4; v++) { abs_id1 = base_seg->verts[(int) base_vp[v]]; abs_id2 = base_seg->verts[(int) base_vp[(v+1) % 4]]; propagate_tmaps_to_segment_side(base_seg, base_side, con_seg, con_side, abs_id1, abs_id2, uv_only_flag); } } // ----------------------------------------------------------------------------- // Propagate texture maps in base_seg to con_seg. // For each wall in con_seg, find the wall in base_seg which shared an edge. Copy tmap_num from that // wall in base_seg to the wall in con_seg. If the wall in base_seg is not present, then look at the // segment connected through base_seg through the wall. The wall with a common edge is the new wall // of interest. Continue searching in this way until a wall of interest is present. void med_propagate_tmaps_to_segments(const vsegptridx_t base_seg,const vsegptridx_t con_seg, int uv_only_flag) { int s; for (s=0; schildren[s] == con_seg) propagate_tmaps_to_segment_sides(base_seg, s, con_seg, find_connect_side(base_seg, con_seg), uv_only_flag); con_seg->static_light = base_seg->static_light; validate_uv_coordinates(con_seg); } // ------------------------------------------------------------------------------- // Copy texture map uvs from srcseg to destseg. // If two segments have different face structure (eg, destseg has two faces on side 3, srcseg has only 1) // then assign uvs according to side vertex id, not face vertex id. void copy_uvs_seg_to_seg(const vsegptr_t destseg,const vsegptr_t srcseg) { int s; for (s=0; ssides[s].tmap_num = srcseg->sides[s].tmap_num; destseg->sides[s].tmap_num2 = srcseg->sides[s].tmap_num2; } destseg->static_light = srcseg->static_light; } // _________________________________________________________________________________________________________________________ // Maximum distance between a segment containing light to a segment to receive light. #define LIGHT_DISTANCE_THRESHOLD (F1_0*80) fix Magical_light_constant = (F1_0*16); // int Seg0, Seg1; //int Bugseg = 27; struct hash_info { sbyte flag, hit_type; vms_vector vector; }; #define FVI_HASH_SIZE 8 #define FVI_HASH_AND_MASK (FVI_HASH_SIZE - 1) // Note: This should be malloced. // Also, the vector should not be 12 bytes, you should only care about some smaller portion of it. static array fvi_cache; int Hash_hits=0, Hash_retries=0, Hash_calcs=0; // ----------------------------------------------------------------------------------------- // Set light from a light source. // Light incident on a surface is defined by the light incident at its points. // Light at a point = K * (V . N) / d // where: // K = some magical constant to make everything look good // V = normalized vector from light source to point // N = surface normal at point // d = distance from light source to point // (Note that the above equation can be simplified to K * (VV . N) / d^2 where VV = non-normalized V) // Light intensity emitted from a light source is defined to be cast from four points. // These four points are 1/64 of the way from the corners of the light source to the center // of its segment. By assuming light is cast from these points, rather than from on the // light surface itself, light will be properly cast on the light surface. Otherwise, the // vector V would be the null vector. // If quick_light set, then don't use find_vector_intersection static void cast_light_from_side(const vsegptridx_t segp, int light_side, fix light_intensity, int quick_light) { int sidenum,vertnum; const auto segment_center = compute_segment_center(segp); // Do for four lights, one just inside each corner of side containing light. range_for (const auto lightnum, Side_to_verts[light_side]) { int light_vertex_num, i; vms_vector light_location; // fix inverse_segment_magnitude; light_vertex_num = segp->verts[lightnum]; light_location = Vertices[light_vertex_num]; // New way, 5/8/95: Move towards center irrespective of size of segment. const auto vector_to_center = vm_vec_normalized_quick(vm_vec_sub(segment_center, light_location)); vm_vec_add2(light_location, vector_to_center); // -- Old way, before 5/8/95 -- // -- This way was kind of dumb. In larger segments, you move LESS towards the center. // -- Old way, before 5/8/95 -- // Main problem, though, is vertices don't illuminate themselves well in oblong segments because the dot product is small. // -- Old way, before 5/8/95 -- vm_vec_sub(&vector_to_center, &segment_center, &light_location); // -- Old way, before 5/8/95 -- inverse_segment_magnitude = fixdiv(F1_0/5, vm_vec_mag(&vector_to_center)); // -- Old way, before 5/8/95 -- vm_vec_scale_add(&light_location, &light_location, &vector_to_center, inverse_segment_magnitude); range_for (const auto segnum, highest_valid(Segments)) { const auto &&rsegp = vsegptr(static_cast(segnum)); fix dist_to_rseg; for (i=0; isides[sidenum]; auto &side_normalp = rsidep->normals[0]; // kinda stupid? always use vector 0. for (vertnum=0; vertnum<4; vertnum++) { fix distance_to_point, light_at_point, light_dot; vms_vector vert_location; int abs_vertnum; abs_vertnum = rsegp->verts[Side_to_verts[sidenum][vertnum]]; vert_location = Vertices[abs_vertnum]; distance_to_point = vm_vec_dist_quick(vert_location, light_location); const auto vector_to_light = vm_vec_normalized(vm_vec_sub(light_location, vert_location)); // Hack: In oblong segments, it's possible to get a very small dot product // but the light source is very nearby (eg, illuminating light itself!). light_dot = vm_vec_dot(vector_to_light, side_normalp); if (distance_to_point < F1_0) if (light_dot > 0) light_dot = (light_dot + F1_0)/2; if (light_dot > 0) { light_at_point = fixdiv(fixmul(light_dot, light_dot), distance_to_point); light_at_point = fixmul(light_at_point, Magical_light_constant); if (light_at_point >= 0) { fvi_info hit_data; int hit_type; fix inverse_segment_magnitude; const auto r_vector_to_center = vm_vec_sub(r_segment_center, vert_location); inverse_segment_magnitude = fixdiv(F1_0/3, vm_vec_mag(r_vector_to_center)); const auto vert_location_1 = vm_vec_scale_add(vert_location, r_vector_to_center, inverse_segment_magnitude); vert_location = vert_location_1; //if ((segp-Segments == 199) && (rsegp-Segments==199)) // Int3(); // Seg0 = segp-Segments; // Seg1 = rsegp-Segments; if (!quick_light) { int hash_value = Side_to_verts[sidenum][vertnum]; hash_info *hashp = &fvi_cache[hash_value]; while (1) { if (hashp->flag) { if ((hashp->vector.x == vector_to_light.x) && (hashp->vector.y == vector_to_light.y) && (hashp->vector.z == vector_to_light.z)) { hit_type = hashp->hit_type; Hash_hits++; break; } else { Int3(); // How is this possible? Should be no hits! Hash_retries++; hash_value = (hash_value+1) & FVI_HASH_AND_MASK; hashp = &fvi_cache[hash_value]; } } else { fvi_query fq; Hash_calcs++; hashp->vector = vector_to_light; hashp->flag = 1; fq.p0 = &light_location; fq.startseg = segp; fq.p1 = &vert_location; fq.rad = 0; fq.thisobjnum = object_none; fq.ignore_obj_list.first = nullptr; fq.flags = 0; hit_type = find_vector_intersection(fq, hit_data); hashp->hit_type = hit_type; break; } } } else hit_type = HIT_NONE; switch (hit_type) { case HIT_NONE: light_at_point = fixmul(light_at_point, light_intensity); rsidep->uvls[vertnum].l += light_at_point; if (rsidep->uvls[vertnum].l > F1_0) rsidep->uvls[vertnum].l = F1_0; break; case HIT_WALL: break; case HIT_OBJECT: Int3(); // Hit object, should be ignoring objects! break; case HIT_BAD_P0: Int3(); // Ugh, this thing again, what happened, what does it mean? break; } } // end if (light_at_point... } // end if (light_dot >... } // end for (vertnum=0... } // end if (rsegp... } // end for (sidenum=0... } // end if (dist_to_rseg... } // end for (segnum=0... } // end for (lightnum=0... } // ------------------------------------------------------------------------------------------ // Zero all lighting values. static void calim_zero_light_values(void) { int sidenum, vertnum; range_for (const auto segnum, highest_valid(Segments)) { const auto &&segp = vsegptr(static_cast(segnum)); for (sidenum=0; sidenumsides[sidenum]; for (vertnum=0; vertnum<4; vertnum++) sidep->uvls[vertnum].l = F1_0/64; // Put a tiny bit of light here. } segp->static_light = F1_0 / 64; } } // ------------------------------------------------------------------------------------------ // Used in setting average light value in a segment, cast light from a side to the center // of all segments. static void cast_light_from_side_to_center(const vsegptridx_t segp, int light_side, fix light_intensity, int quick_light) { const auto segment_center = compute_segment_center(segp); // Do for four lights, one just inside each corner of side containing light. range_for (const auto lightnum, Side_to_verts[light_side]) { const auto light_vertex_num = segp->verts[lightnum]; const auto &vert_light_location = Vertices[light_vertex_num]; const auto vector_to_center = vm_vec_sub(segment_center, vert_light_location); const auto light_location = vm_vec_scale_add(vert_light_location, vector_to_center, F1_0/64); range_for (const auto segnum, highest_valid(Segments)) { const auto &&rsegp = vsegptr(static_cast(segnum)); fix dist_to_rseg; //if ((segp == &Segments[Bugseg]) && (rsegp == &Segments[Bugseg])) // Int3(); const auto r_segment_center = compute_segment_center(rsegp); dist_to_rseg = vm_vec_dist_quick(r_segment_center, segment_center); if (dist_to_rseg <= LIGHT_DISTANCE_THRESHOLD) { fix light_at_point; if (dist_to_rseg > F1_0) light_at_point = fixdiv(Magical_light_constant, dist_to_rseg); else light_at_point = Magical_light_constant; if (light_at_point >= 0) { int hit_type; if (!quick_light) { fvi_query fq; fvi_info hit_data; fq.p0 = &light_location; fq.startseg = segp; fq.p1 = &r_segment_center; fq.rad = 0; fq.thisobjnum = object_none; fq.ignore_obj_list.first = nullptr; fq.flags = 0; hit_type = find_vector_intersection(fq, hit_data); } else hit_type = HIT_NONE; switch (hit_type) { case HIT_NONE: light_at_point = fixmul(light_at_point, light_intensity); if (light_at_point >= F1_0) light_at_point = F1_0-1; rsegp->static_light += light_at_point; if (segp->static_light < 0) // if it went negative, saturate segp->static_light = 0; break; case HIT_WALL: break; case HIT_OBJECT: Int3(); // Hit object, should be ignoring objects! break; case HIT_BAD_P0: Int3(); // Ugh, this thing again, what happened, what does it mean? break; } } // end if (light_at_point... } // end if (dist_to_rseg... } // end for (segnum=0... } // end for (lightnum=0... } // ------------------------------------------------------------------------------------------ // Process all lights. static void calim_process_all_lights(int quick_light) { int sidenum; range_for (const auto segnum, highest_valid(Segments)) { const auto &&segp = vsegptridx(static_cast(segnum)); for (sidenum=0; sidenumchildren[sidenum])) { if (WALL_IS_DOORWAY(segp, sidenum) != WID_NO_WALL) { const auto sidep = &segp->sides[sidenum]; fix light_intensity; light_intensity = TmapInfo[sidep->tmap_num].lighting + TmapInfo[sidep->tmap_num2 & 0x3fff].lighting; // if (segp->sides[sidenum].wall_num != -1) { // int wall_num, bitmap_num, effect_num; // wall_num = segp->sides[sidenum].wall_num; // effect_num = Walls[wall_num].type; // bitmap_num = effects_bm_num[effect_num]; // // light_intensity += TmapInfo[bitmap_num].lighting; // } if (light_intensity) { light_intensity /= 4; // casting light from four spots, so divide by 4. cast_light_from_side(segp, sidenum, light_intensity, quick_light); cast_light_from_side_to_center(segp, sidenum, light_intensity, quick_light); } } } } } // ------------------------------------------------------------------------------------------ // Apply static light in mine. // First, zero all light values. // Then, for all light sources, cast their light. static void cast_all_light_in_mine(int quick_flag) { validate_segment_all(); calim_zero_light_values(); calim_process_all_lights(quick_flag); } // int Fvit_num = 1000; // // fix find_vector_intersection_test(void) // { // int i; // fvi_info hit_data; // int p0_seg, p1_seg, this_objnum, ignore_obj, check_obj_flag; // fix rad; // int start_time = timer_get_milliseconds();; // vms_vector p0,p1; // // ignore_obj = 1; // check_obj_flag = 0; // this_objnum = -1; // rad = F1_0/4; // // for (i=0; i