/* THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE. COPYRIGHT 1993-1998 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED. */ /* * * C version of vecmat library * */ #include #include // for sqrt #include "maths.h" #include "vecmat.h" #include "dxxerror.h" //#define USE_ISQRT 1 vms_vector vmd_zero_vector = {0, 0, 0}; vms_matrix vmd_identity_matrix = { { f1_0, 0, 0 }, { 0, f1_0, 0 }, { 0, 0, f1_0 } }; //adds two vectors, fills in dest, returns ptr to dest //ok for dest to equal either source, but should use vm_vec_add2() if so vms_vector *vm_vec_add(vms_vector *dest,const vms_vector *src0,const vms_vector *src1) { dest->x = src0->x + src1->x; dest->y = src0->y + src1->y; dest->z = src0->z + src1->z; return dest; } //subs two vectors, fills in dest, returns ptr to dest //ok for dest to equal either source, but should use vm_vec_sub2() if so vms_vector *vm_vec_sub(vms_vector *dest,const vms_vector *src0,const vms_vector *src1) { dest->x = src0->x - src1->x; dest->y = src0->y - src1->y; dest->z = src0->z - src1->z; return dest; } //adds one vector to another. returns ptr to dest //dest can equal source vms_vector *vm_vec_add2(vms_vector *dest,const vms_vector *src) { dest->x += src->x; dest->y += src->y; dest->z += src->z; return dest; } //subs one vector from another, returns ptr to dest //dest can equal source vms_vector *vm_vec_sub2(vms_vector *dest,const vms_vector *src) { dest->x -= src->x; dest->y -= src->y; dest->z -= src->z; return dest; } //averages two vectors. returns ptr to dest //dest can equal either source vms_vector *vm_vec_avg(vms_vector *dest,const vms_vector *src0,const vms_vector *src1) { dest->x = (src0->x + src1->x)/2; dest->y = (src0->y + src1->y)/2; dest->z = (src0->z + src1->z)/2; return dest; } //averages four vectors. returns ptr to dest //dest can equal any source vms_vector *vm_vec_avg4(vms_vector *dest,const vms_vector *src0,const vms_vector *src1,const vms_vector *src2,const vms_vector *src3) { dest->x = (src0->x + src1->x + src2->x + src3->x)/4; dest->y = (src0->y + src1->y + src2->y + src3->y)/4; dest->z = (src0->z + src1->z + src2->z + src3->z)/4; return dest; } //scales a vector in place. returns ptr to vector vms_vector *vm_vec_scale(vms_vector *dest,fix s) { dest->x = fixmul(dest->x,s); dest->y = fixmul(dest->y,s); dest->z = fixmul(dest->z,s); return dest; } //scales and copies a vector. returns ptr to dest vms_vector *vm_vec_copy_scale(vms_vector *dest,const vms_vector *src,fix s) { dest->x = fixmul(src->x,s); dest->y = fixmul(src->y,s); dest->z = fixmul(src->z,s); return dest; } //scales a vector, adds it to another, and stores in a 3rd vector //dest = src1 + k * src2 vms_vector *vm_vec_scale_add(vms_vector *dest,const vms_vector *src1,const vms_vector *src2,fix k) { dest->x = src1->x + fixmul(src2->x,k); dest->y = src1->y + fixmul(src2->y,k); dest->z = src1->z + fixmul(src2->z,k); return dest; } //scales a vector and adds it to another //dest += k * src vms_vector *vm_vec_scale_add2(vms_vector *dest,const vms_vector *src,fix k) { dest->x += fixmul(src->x,k); dest->y += fixmul(src->y,k); dest->z += fixmul(src->z,k); return dest; } //scales a vector in place, taking n/d for scale. returns ptr to vector //dest *= n/d vms_vector *vm_vec_scale2(vms_vector *dest,fix n,fix d) { #if 1 // DPH: Kludge: this was overflowing a lot, so I made it use the FPU. float nd; nd = f2fl(n) / f2fl(d); dest->x = fl2f( f2fl(dest->x) * nd); dest->y = fl2f( f2fl(dest->y) * nd); dest->z = fl2f( f2fl(dest->z) * nd); #else dest->x = fixmuldiv(dest->x,n,d); dest->y = fixmuldiv(dest->y,n,d); dest->z = fixmuldiv(dest->z,n,d); #endif return dest; } fix vm_vec_dotprod(const vms_vector *v0,const vms_vector *v1) { #if 0 quadint q; q.low = q.high = 0; fixmulaccum(&q,v0->x,v1->x); fixmulaccum(&q,v0->y,v1->y); fixmulaccum(&q,v0->z,v1->z); return fixquadadjust(&q); #else long long p = (long long) v0->x * v1->x + (long long) v0->y * v1->y + (long long) v0->z * v1->z; /* Convert back to fix and return. */ return p >> 16; #endif } fix vm_vec_dot3(fix x,fix y,fix z,vms_vector *v) { #if 0 quadint q; q.low = q.high = 0; fixmulaccum(&q,x,v->x); fixmulaccum(&q,y,v->y); fixmulaccum(&q,z,v->z); return fixquadadjust(&q); #else long long p = (long long) x * v->x + (long long) y * v->y + (long long) z * v->z; /* Convert back to fix and return. */ return p >> 16; #endif } //returns magnitude of a vector fix vm_vec_mag(vms_vector *v) { quadint q; q.low = q.high = 0; fixmulaccum(&q,v->x,v->x); fixmulaccum(&q,v->y,v->y); fixmulaccum(&q,v->z,v->z); return quad_sqrt(q.low,q.high); } //computes the distance between two points. (does sub and mag) fix vm_vec_dist(const vms_vector *v0,const vms_vector *v1) { vms_vector t; vm_vec_sub(&t,v0,v1); return vm_vec_mag(&t); } //computes an approximation of the magnitude of the vector //uses dist = largest + next_largest*3/8 + smallest*3/16 fix vm_vec_mag_quick(vms_vector *v) { fix a,b,c,bc; a = labs(v->x); b = labs(v->y); c = labs(v->z); if (a < b) { fix t=a; a=b; b=t; } if (b < c) { fix t=b; b=c; c=t; if (a < b) { fix t=a; a=b; b=t; } } bc = (b>>2) + (c>>3); return a + bc + (bc>>1); } //computes an approximation of the distance between two points. //uses dist = largest + next_largest*3/8 + smallest*3/16 fix vm_vec_dist_quick(vms_vector *v0,vms_vector *v1) { vms_vector t; vm_vec_sub(&t,v0,v1); return vm_vec_mag_quick(&t); } //normalize a vector. returns mag of source vec fix vm_vec_copy_normalize(vms_vector *dest,vms_vector *src) { fix m; m = vm_vec_mag(src); if (m > 0) { dest->x = fixdiv(src->x,m); dest->y = fixdiv(src->y,m); dest->z = fixdiv(src->z,m); } return m; } //normalize a vector. returns mag of source vec fix vm_vec_normalize(vms_vector *v) { return vm_vec_copy_normalize(v,v); } #ifndef USE_ISQRT //normalize a vector. returns mag of source vec. uses approx mag fix vm_vec_copy_normalize_quick(vms_vector *dest,vms_vector *src) { fix m; m = vm_vec_mag_quick(src); if (m > 0) { dest->x = fixdiv(src->x,m); dest->y = fixdiv(src->y,m); dest->z = fixdiv(src->z,m); } return m; } #else //these routines use an approximation for 1/sqrt //returns approximation of 1/magnitude of a vector fix vm_vec_imag(vms_vector *v) { quadint q; q.low = q.high = 0; fixmulaccum(&q,v->x,v->x); fixmulaccum(&q,v->y,v->y); fixmulaccum(&q,v->z,v->z); if (q.high==0) return fix_isqrt(fixquadadjust(&q)); else if (q.high >= 0x800000) { return (fix_isqrt(q.high) >> 8); } else return (fix_isqrt((q.high<<8) + (q.low>>24)) >> 4); } //normalize a vector. returns 1/mag of source vec. uses approx 1/mag fix vm_vec_copy_normalize_quick(vms_vector *dest,vms_vector *src) { fix im; im = vm_vec_imag(src); dest->x = fixmul(src->x,im); dest->y = fixmul(src->y,im); dest->z = fixmul(src->z,im); return im; } #endif //normalize a vector. returns 1/mag of source vec. uses approx 1/mag fix vm_vec_normalize_quick(vms_vector *v) { return vm_vec_copy_normalize_quick(v,v); } //return the normalized direction vector between two points //dest = normalized(end - start). Returns 1/mag of direction vector //NOTE: the order of the parameters matches the vector subtraction fix vm_vec_normalized_dir_quick(vms_vector *dest,vms_vector *end,vms_vector *start) { vm_vec_sub(dest,end,start); return vm_vec_normalize_quick(dest); } //return the normalized direction vector between two points //dest = normalized(end - start). Returns mag of direction vector //NOTE: the order of the parameters matches the vector subtraction fix vm_vec_normalized_dir(vms_vector *dest,vms_vector *end,vms_vector *start) { vm_vec_sub(dest,end,start); return vm_vec_normalize(dest); } //computes surface normal from three points. result is normalized //returns ptr to dest //dest CANNOT equal either source vms_vector *vm_vec_normal(vms_vector *dest,vms_vector *p0,vms_vector *p1,vms_vector *p2) { vm_vec_perp(dest,p0,p1,p2); vm_vec_normalize(dest); return dest; } //make sure a vector is reasonably sized to go into a cross product void check_vec(vms_vector *v) { fix check; int cnt = 0; check = labs(v->x) | labs(v->y) | labs(v->z); if (check == 0) return; if (check & 0xfffc0000) { //too big while (check & 0xfff00000) { cnt += 4; check >>= 4; } while (check & 0xfffc0000) { cnt += 2; check >>= 2; } v->x >>= cnt; v->y >>= cnt; v->z >>= cnt; } else //maybe too small if ((check & 0xffff8000) == 0) { //yep, too small while ((check & 0xfffff000) == 0) { cnt += 4; check <<= 4; } while ((check & 0xffff8000) == 0) { cnt += 2; check <<= 2; } v->x >>= cnt; v->y >>= cnt; v->z >>= cnt; } } //computes cross product of two vectors. //Note: this magnitude of the resultant vector is the //product of the magnitudes of the two source vectors. This means it is //quite easy for this routine to overflow and underflow. Be careful that //your inputs are ok. //#ifndef __powerc #if 0 vms_vector *vm_vec_crossprod(vms_vector *dest,vms_vector *src0,vms_vector *src1) { double d; Assert(dest!=src0 && dest!=src1); d = (double)(src0->y) * (double)(src1->z); d += (double)-(src0->z) * (double)(src1->y); d /= 65536.0; if (d < 0.0) d = d - 1.0; dest->x = (fix)d; d = (double)(src0->z) * (double)(src1->x); d += (double)-(src0->x) * (double)(src1->z); d /= 65536.0; if (d < 0.0) d = d - 1.0; dest->y = (fix)d; d = (double)(src0->x) * (double)(src1->y); d += (double)-(src0->y) * (double)(src1->x); d /= 65536.0; if (d < 0.0) d = d - 1.0; dest->z = (fix)d; return dest; } #else vms_vector *vm_vec_crossprod(vms_vector *dest,vms_vector *src0,vms_vector *src1) { quadint q; Assert(dest!=src0 && dest!=src1); q.low = q.high = 0; fixmulaccum(&q,src0->y,src1->z); fixmulaccum(&q,-src0->z,src1->y); dest->x = fixquadadjust(&q); q.low = q.high = 0; fixmulaccum(&q,src0->z,src1->x); fixmulaccum(&q,-src0->x,src1->z); dest->y = fixquadadjust(&q); q.low = q.high = 0; fixmulaccum(&q,src0->x,src1->y); fixmulaccum(&q,-src0->y,src1->x); dest->z = fixquadadjust(&q); return dest; } #endif //computes non-normalized surface normal from three points. //returns ptr to dest //dest CANNOT equal either source vms_vector *vm_vec_perp(vms_vector *dest,vms_vector *p0,vms_vector *p1,vms_vector *p2) { vms_vector t0,t1; vm_vec_sub(&t0,p1,p0); vm_vec_sub(&t1,p2,p1); check_vec(&t0); check_vec(&t1); return vm_vec_crossprod(dest,&t0,&t1); } //computes the delta angle between two vectors. //vectors need not be normalized. if they are, call vm_vec_delta_ang_norm() //the forward vector (third parameter) can be NULL, in which case the absolute //value of the angle in returned. Otherwise the angle around that vector is //returned. fixang vm_vec_delta_ang(vms_vector *v0,vms_vector *v1,vms_vector *fvec) { vms_vector t0,t1; vm_vec_copy_normalize(&t0,v0); vm_vec_copy_normalize(&t1,v1); return vm_vec_delta_ang_norm(&t0,&t1,fvec); } //computes the delta angle between two normalized vectors. fixang vm_vec_delta_ang_norm(vms_vector *v0,vms_vector *v1,vms_vector *fvec) { fixang a; a = fix_acos(vm_vec_dot(v0,v1)); if (fvec) { vms_vector t; vm_vec_cross(&t,v0,v1); if (vm_vec_dot(&t,fvec) < 0) a = -a; } return a; } vms_matrix *sincos_2_matrix(vms_matrix *m,fix sinp,fix cosp,fix sinb,fix cosb,fix sinh,fix cosh) { fix sbsh,cbch,cbsh,sbch; sbsh = fixmul(sinb,sinh); cbch = fixmul(cosb,cosh); cbsh = fixmul(cosb,sinh); sbch = fixmul(sinb,cosh); m->rvec.x = cbch + fixmul(sinp,sbsh); //m1 m->uvec.z = sbsh + fixmul(sinp,cbch); //m8 m->uvec.x = fixmul(sinp,cbsh) - sbch; //m2 m->rvec.z = fixmul(sinp,sbch) - cbsh; //m7 m->fvec.x = fixmul(sinh,cosp); //m3 m->rvec.y = fixmul(sinb,cosp); //m4 m->uvec.y = fixmul(cosb,cosp); //m5 m->fvec.z = fixmul(cosh,cosp); //m9 m->fvec.y = -sinp; //m6 return m; } //computes a matrix from a set of three angles. returns ptr to matrix vms_matrix *vm_angles_2_matrix(vms_matrix *m,vms_angvec *a) { fix sinp,cosp,sinb,cosb,sinh,cosh; fix_sincos(a->p,&sinp,&cosp); fix_sincos(a->b,&sinb,&cosb); fix_sincos(a->h,&sinh,&cosh); return sincos_2_matrix(m,sinp,cosp,sinb,cosb,sinh,cosh); } //computes a matrix from a forward vector and an angle vms_matrix *vm_vec_ang_2_matrix(vms_matrix *m,vms_vector *v,fixang a) { fix sinb,cosb,sinp,cosp,sinh,cosh; fix_sincos(a,&sinb,&cosb); sinp = -v->y; cosp = fix_sqrt(f1_0 - fixmul(sinp,sinp)); sinh = fixdiv(v->x,cosp); cosh = fixdiv(v->z,cosp); return sincos_2_matrix(m,sinp,cosp,sinb,cosb,sinh,cosh); } //computes a matrix from one or more vectors. The forward vector is required, //with the other two being optional. If both up & right vectors are passed, //the up vector is used. If only the forward vector is passed, a bank of //zero is assumed //returns ptr to matrix vms_matrix *vm_vector_2_matrix(vms_matrix *m,vms_vector *fvec,vms_vector *uvec,vms_vector *rvec) { vms_vector *xvec=&m->rvec,*yvec=&m->uvec,*zvec=&m->fvec; Assert(fvec != NULL); if (vm_vec_copy_normalize(zvec,fvec) == 0) { Int3(); //forward vec should not be zero-length return m; } if (uvec == NULL) { if (rvec == NULL) { //just forward vec bad_vector2: ; if (zvec->x==0 && zvec->z==0) { //forward vec is straight up or down m->rvec.x = f1_0; m->uvec.z = (zvec->y<0)?f1_0:-f1_0; m->rvec.y = m->rvec.z = m->uvec.x = m->uvec.y = 0; } else { //not straight up or down xvec->x = zvec->z; xvec->y = 0; xvec->z = -zvec->x; vm_vec_normalize(xvec); vm_vec_crossprod(yvec,zvec,xvec); } } else { //use right vec if (vm_vec_copy_normalize(xvec,rvec) == 0) goto bad_vector2; vm_vec_crossprod(yvec,zvec,xvec); //normalize new perpendicular vector if (vm_vec_normalize(yvec) == 0) goto bad_vector2; //now recompute right vector, in case it wasn't entirely perpendiclar vm_vec_crossprod(xvec,yvec,zvec); } } else { //use up vec if (vm_vec_copy_normalize(yvec,uvec) == 0) goto bad_vector2; vm_vec_crossprod(xvec,yvec,zvec); //normalize new perpendicular vector if (vm_vec_normalize(xvec) == 0) goto bad_vector2; //now recompute up vector, in case it wasn't entirely perpendiclar vm_vec_crossprod(yvec,zvec,xvec); } return m; } //quicker version of vm_vector_2_matrix() that takes normalized vectors vms_matrix *vm_vector_2_matrix_norm(vms_matrix *m,vms_vector *fvec,vms_vector *uvec,vms_vector *rvec) { vms_vector *xvec=&m->rvec,*yvec=&m->uvec,*zvec=&m->fvec; Assert(fvec != NULL); if (uvec == NULL) { if (rvec == NULL) { //just forward vec bad_vector2: ; if (zvec->x==0 && zvec->z==0) { //forward vec is straight up or down m->rvec.x = f1_0; m->uvec.z = (zvec->y<0)?f1_0:-f1_0; m->rvec.y = m->rvec.z = m->uvec.x = m->uvec.y = 0; } else { //not straight up or down xvec->x = zvec->z; xvec->y = 0; xvec->z = -zvec->x; vm_vec_normalize(xvec); vm_vec_crossprod(yvec,zvec,xvec); } } else { //use right vec vm_vec_crossprod(yvec,zvec,xvec); //normalize new perpendicular vector if (vm_vec_normalize(yvec) == 0) goto bad_vector2; //now recompute right vector, in case it wasn't entirely perpendiclar vm_vec_crossprod(xvec,yvec,zvec); } } else { //use up vec vm_vec_crossprod(xvec,yvec,zvec); //normalize new perpendicular vector if (vm_vec_normalize(xvec) == 0) goto bad_vector2; //now recompute up vector, in case it wasn't entirely perpendiclar vm_vec_crossprod(yvec,zvec,xvec); } return m; } //rotates a vector through a matrix. returns ptr to dest vector //dest CANNOT equal source vms_vector *vm_vec_rotate(vms_vector *dest,const vms_vector *src,const vms_matrix *m) { Assert(dest != src); dest->x = vm_vec_dot(src,&m->rvec); dest->y = vm_vec_dot(src,&m->uvec); dest->z = vm_vec_dot(src,&m->fvec); return dest; } //transpose a matrix in place. returns ptr to matrix vms_matrix *vm_transpose_matrix(vms_matrix *m) { fix t; t = m->uvec.x; m->uvec.x = m->rvec.y; m->rvec.y = t; t = m->fvec.x; m->fvec.x = m->rvec.z; m->rvec.z = t; t = m->fvec.y; m->fvec.y = m->uvec.z; m->uvec.z = t; return m; } //copy and transpose a matrix. returns ptr to matrix //dest CANNOT equal source. use vm_transpose_matrix() if this is the case vms_matrix *vm_copy_transpose_matrix(vms_matrix *dest,vms_matrix *src) { Assert(dest != src); dest->rvec.x = src->rvec.x; dest->rvec.y = src->uvec.x; dest->rvec.z = src->fvec.x; dest->uvec.x = src->rvec.y; dest->uvec.y = src->uvec.y; dest->uvec.z = src->fvec.y; dest->fvec.x = src->rvec.z; dest->fvec.y = src->uvec.z; dest->fvec.z = src->fvec.z; return dest; } //mulitply 2 matrices, fill in dest. returns ptr to dest //dest CANNOT equal either source vms_matrix *vm_matrix_x_matrix(vms_matrix *dest,vms_matrix *src0,vms_matrix *src1) { Assert(dest!=src0 && dest!=src1); dest->rvec.x = vm_vec_dot3(src0->rvec.x,src0->uvec.x,src0->fvec.x, &src1->rvec); dest->uvec.x = vm_vec_dot3(src0->rvec.x,src0->uvec.x,src0->fvec.x, &src1->uvec); dest->fvec.x = vm_vec_dot3(src0->rvec.x,src0->uvec.x,src0->fvec.x, &src1->fvec); dest->rvec.y = vm_vec_dot3(src0->rvec.y,src0->uvec.y,src0->fvec.y, &src1->rvec); dest->uvec.y = vm_vec_dot3(src0->rvec.y,src0->uvec.y,src0->fvec.y, &src1->uvec); dest->fvec.y = vm_vec_dot3(src0->rvec.y,src0->uvec.y,src0->fvec.y, &src1->fvec); dest->rvec.z = vm_vec_dot3(src0->rvec.z,src0->uvec.z,src0->fvec.z, &src1->rvec); dest->uvec.z = vm_vec_dot3(src0->rvec.z,src0->uvec.z,src0->fvec.z, &src1->uvec); dest->fvec.z = vm_vec_dot3(src0->rvec.z,src0->uvec.z,src0->fvec.z, &src1->fvec); return dest; } //extract angles from a matrix vms_angvec *vm_extract_angles_matrix(vms_angvec *a,vms_matrix *m) { fix sinh,cosh,cosp; if (m->fvec.x==0 && m->fvec.z==0) //zero head a->h = 0; else a->h = fix_atan2(m->fvec.z,m->fvec.x); fix_sincos(a->h,&sinh,&cosh); if (abs(sinh) > abs(cosh)) //sine is larger, so use it cosp = fixdiv(m->fvec.x,sinh); else //cosine is larger, so use it cosp = fixdiv(m->fvec.z,cosh); if (cosp==0 && m->fvec.y==0) a->p = 0; else a->p = fix_atan2(cosp,-m->fvec.y); if (cosp == 0) //the cosine of pitch is zero. we're pitched straight up. say no bank a->b = 0; else { fix sinb,cosb; sinb = fixdiv(m->rvec.y,cosp); cosb = fixdiv(m->uvec.y,cosp); if (sinb==0 && cosb==0) a->b = 0; else a->b = fix_atan2(cosb,sinb); } return a; } //extract heading and pitch from a vector, assuming bank==0 vms_angvec *vm_extract_angles_vector_normalized(vms_angvec *a,vms_vector *v) { a->b = 0; //always zero bank a->p = fix_asin(-v->y); if (v->x==0 && v->z==0) a->h = 0; else a->h = fix_atan2(v->z,v->x); return a; } //extract heading and pitch from a vector, assuming bank==0 vms_angvec *vm_extract_angles_vector(vms_angvec *a,vms_vector *v) { vms_vector t; if (vm_vec_copy_normalize(&t,v) != 0) vm_extract_angles_vector_normalized(a,&t); return a; } //compute the distance from a point to a plane. takes the normalized normal //of the plane (ebx), a point on the plane (edi), and the point to check (esi). //returns distance in eax //distance is signed, so negative dist is on the back of the plane fix vm_dist_to_plane(const vms_vector *checkp,const vms_vector *norm,const vms_vector *planep) { vms_vector t; vm_vec_sub(&t,checkp,planep); return vm_vec_dot(&t,norm); } vms_vector *vm_vec_make(vms_vector *v,fix x,fix y,fix z) { v->x=x; v->y=y; v->z=z; return v; } // convert vms_matrix to vms_quaternion void vms_quaternion_from_matrix(vms_quaternion * q, const vms_matrix * m) { fix tr = m->rvec.x + m->uvec.y + m->fvec.z; if (tr > 0) { fix s = fixmul(fix_sqrt(tr + fl2f(1.0)), fl2f(2.0)); q->w = fixmul(fl2f(0.25), s) * .5; q->x = fixdiv(m->fvec.y - m->uvec.z, s) * .5; q->y = fixdiv(m->rvec.z - m->fvec.x, s) * .5; q->z = fixdiv(m->uvec.x - m->rvec.y, s) * .5; } else if ((m->rvec.x > m->uvec.y)&(m->rvec.x > m->fvec.z)) { fix s = fixmul(fix_sqrt(fl2f(1.0) + m->rvec.x - m->uvec.y - m->fvec.z), fl2f(2.0)); q->w = fixdiv(m->fvec.y - m->uvec.z, s) * .5; q->x = fixmul(fl2f(0.25), s) * .5; q->y = fixdiv(m->rvec.y + m->uvec.x, s) * .5; q->z = fixdiv(m->rvec.z + m->fvec.x, s) * .5; } else if (m->uvec.y > m->fvec.z) { fix s = fixmul(fix_sqrt(fl2f(1.0) + m->uvec.y - m->rvec.x - m->fvec.z), fl2f(2.0)); q->w = fixdiv(m->rvec.z - m->fvec.x, s) * .5; q->x = fixdiv(m->rvec.y + m->uvec.x ,s) * .5; q->y = fixmul(fl2f(0.25), s) * .5; q->z = fixdiv(m->uvec.z + m->fvec.y , s) * .5; } else { fix s = fixmul(fix_sqrt(fl2f(1.0) + m->fvec.z - m->rvec.x - m->uvec.y), fl2f(2.0)); q->w = fixdiv(m->uvec.x - m->rvec.y , s) * .5; q->x = fixdiv(m->rvec.z + m->fvec.x , s) * .5; q->y = fixdiv(m->uvec.z + m->fvec.y, s) * .5; q->z = fixmul(fl2f(0.25), s) * .5; } } // convert vms_quaternion to vms_matrix void vms_matrix_from_quaternion(vms_matrix * m, const vms_quaternion * q) { fix sqw = fixmul(q->w * 2, q->w * 2); fix sqx = fixmul(q->x * 2, q->x * 2); fix sqy = fixmul(q->y * 2, q->y * 2); fix sqz = fixmul(q->z * 2, q->z * 2); fix invs = fixdiv(fl2f(1.0), (sqw + sqx + sqy + sqz)); fix tmp1, tmp2; m->rvec.x = fixmul(sqx - sqy - sqz + sqw, invs); m->uvec.y = fixmul(-sqx + sqy - sqz + sqw, invs); m->fvec.z = fixmul(-sqx - sqy + sqz + sqw, invs); tmp1 = fixmul(q->x * 2, q->y * 2); tmp2 = fixmul(q->z * 2, q->w * 2); m->uvec.x = fixmul(fixmul(fl2f(2.0), (tmp1 + tmp2)), invs); m->rvec.y = fixmul(fixmul(fl2f(2.0), (tmp1 - tmp2)), invs); tmp1 = fixmul(q->x * 2, q->z * 2); tmp2 = fixmul(q->y * 2, q->w * 2); m->fvec.x = fixmul(fixmul(fl2f(2.0), (tmp1 - tmp2)), invs); m->rvec.z = fixmul(fixmul(fl2f(2.0), (tmp1 + tmp2)), invs); tmp1 = fixmul(q->y * 2, q->z * 2); tmp2 = fixmul(q->x * 2, q->w * 2); m->fvec.y = fixmul(fixmul(fl2f(2.0), (tmp1 + tmp2)), invs); m->uvec.z = fixmul(fixmul(fl2f(2.0), (tmp1 - tmp2)), invs); }