/* THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE. COPYRIGHT 1993-1999 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED. */ /* * * Routines for bitblt's. * */ #include #include "u_mem.h" #include "gr.h" #include "grdef.h" #include "rle.h" #include "dxxerror.h" #include "byteswap.h" #ifdef OGL #include "ogl_init.h" #endif static int gr_bitblt_dest_step_shift = 0; static int gr_bitblt_double = 0; static ubyte *gr_bitblt_fade_table=NULL; static void gr_bm_ubitblt00_rle(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest); static void gr_bm_ubitblt00m_rle(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest); static void gr_bm_ubitblt0x_rle(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest); static void gr_linear_movsd( ubyte * source, ubyte * dest, unsigned int nbytes) { memcpy(dest,source,nbytes); } static void gr_linear_rep_movsdm(ubyte *src, ubyte *dest, int num_pixels) { register ubyte c; while (num_pixels--) if ((c=*src++)!=255) *dest++=c; else dest++; } static void gr_linear_rep_movsdm_faded(ubyte * src, ubyte * dest, int num_pixels, ubyte fade_value ) { register ubyte c; while (num_pixels--) if ((c=*src++)!=255) *dest++=gr_fade_table[((int)fade_value<<8)|(int)c]; else dest++; } static void gr_linear_rep_movsd_2x(ubyte * source, ubyte * dest, uint nbytes ) { register ubyte c; while (nbytes--) { if (nbytes&1) *dest++=*source++; else { unsigned short *sp=(unsigned short *)dest; c=*source++; *sp=((short)c<<8)|(short)c; dest+=2; } } } static void gr_ubitmap00( int x, int y, grs_bitmap *bm ) { register int y1; int dest_rowsize; unsigned char * dest; unsigned char * src; dest_rowsize=grd_curcanv->cv_bitmap.bm_rowsize << gr_bitblt_dest_step_shift; dest = &(grd_curcanv->cv_bitmap.bm_data[ dest_rowsize*y+x ]); src = bm->bm_data; for (y1=0; y1 < bm->bm_h; y1++ ) { if (gr_bitblt_double) gr_linear_rep_movsd_2x( src, dest, bm->bm_w ); else gr_linear_movsd( src, dest, bm->bm_w ); src += bm->bm_rowsize; dest+= (int)(dest_rowsize); } } static void gr_ubitmap00m( int x, int y, grs_bitmap *bm ) { register int y1; int dest_rowsize; unsigned char * dest; unsigned char * src; dest_rowsize=grd_curcanv->cv_bitmap.bm_rowsize << gr_bitblt_dest_step_shift; dest = &(grd_curcanv->cv_bitmap.bm_data[ dest_rowsize*y+x ]); src = bm->bm_data; if (gr_bitblt_fade_table==NULL) { for (y1=0; y1 < bm->bm_h; y1++ ) { gr_linear_rep_movsdm( src, dest, bm->bm_w ); src += bm->bm_rowsize; dest+= (int)(dest_rowsize); } } else { for (y1=0; y1 < bm->bm_h; y1++ ) { gr_linear_rep_movsdm_faded( src, dest, bm->bm_w, gr_bitblt_fade_table[y1+y] ); src += bm->bm_rowsize; dest+= (int)(dest_rowsize); } } } static void gr_ubitmap012( int x, int y, grs_bitmap *bm ) { register int x1, y1; unsigned char * src; src = bm->bm_data; for (y1=y; y1 < (y+bm->bm_h); y1++ ) { for (x1=x; x1 < (x+bm->bm_w); x1++ ) { gr_setcolor( *src++ ); gr_upixel( x1, y1 ); } } } static void gr_ubitmap012m( int x, int y, grs_bitmap *bm ) { register int x1, y1; unsigned char * src; src = bm->bm_data; for (y1=y; y1 < (y+bm->bm_h); y1++ ) { for (x1=x; x1 < (x+bm->bm_w); x1++ ) { if ( *src != 255 ) { gr_setcolor( *src ); gr_upixel( x1, y1 ); } src++; } } } static void gr_ubitmapGENERIC(int x, int y, grs_bitmap * bm) { register int x1, y1; for (y1=0; y1 < bm->bm_h; y1++ ) { for (x1=0; x1 < bm->bm_w; x1++ ) { gr_setcolor( gr_gpixel(bm,x1,y1) ); gr_upixel( x+x1, y+y1 ); } } } static void gr_ubitmapGENERICm(int x, int y, grs_bitmap * bm) { register int x1, y1; ubyte c; for (y1=0; y1 < bm->bm_h; y1++ ) { for (x1=0; x1 < bm->bm_w; x1++ ) { c = gr_gpixel(bm,x1,y1); if ( c != 255 ) { gr_setcolor( c ); gr_upixel( x+x1, y+y1 ); } } } } void gr_ubitmap( int x, int y, grs_bitmap *bm ) { int source, dest; source = bm->bm_type; dest = TYPE; if (source==BM_LINEAR) { switch( dest ) { case BM_LINEAR: if ( bm->bm_flags & BM_FLAG_RLE ) gr_bm_ubitblt00_rle(bm->bm_w, bm->bm_h, x, y, 0, 0, bm, &grd_curcanv->cv_bitmap ); else gr_ubitmap00( x, y, bm ); return; #ifdef OGL case BM_OGL: ogl_ubitmapm_cs(x,y,-1,-1,bm,-1,F1_0); return; #endif default: gr_ubitmap012( x, y, bm ); return; } } else { gr_ubitmapGENERIC(x, y, bm); } } void gr_ubitmapm( int x, int y, grs_bitmap *bm ) { int source, dest; source = bm->bm_type; dest = TYPE; if (source==BM_LINEAR) { switch( dest ) { case BM_LINEAR: if ( bm->bm_flags & BM_FLAG_RLE ) gr_bm_ubitblt00m_rle(bm->bm_w, bm->bm_h, x, y, 0, 0, bm, &grd_curcanv->cv_bitmap ); else gr_ubitmap00m( x, y, bm ); return; #ifdef OGL case BM_OGL: ogl_ubitmapm_cs(x,y,-1,-1,bm,-1,F1_0); return; #endif default: gr_ubitmap012m( x, y, bm ); return; } } else { gr_ubitmapGENERICm(x, y, bm); } } // From Linear to Linear static void gr_bm_ubitblt00(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest) { unsigned char * dbits; unsigned char * sbits; //int src_bm_rowsize_2, dest_bm_rowsize_2; int dstep; int i; sbits = src->bm_data + (src->bm_rowsize * sy) + sx; dbits = dest->bm_data + (dest->bm_rowsize * dy) + dx; dstep = dest->bm_rowsize << gr_bitblt_dest_step_shift; // No interlacing, copy the whole buffer. if (gr_bitblt_double) for (i=0; i < h; i++ ) { gr_linear_rep_movsd_2x( sbits, dbits, w ); sbits += src->bm_rowsize; dbits += dstep; } else for (i=0; i < h; i++ ) { gr_linear_movsd( sbits, dbits, w ); //memcpy(dbits, sbits, w); sbits += src->bm_rowsize; dbits += dstep; } } // From Linear to Linear Masked static void gr_bm_ubitblt00m(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest) { unsigned char * dbits; unsigned char * sbits; //int src_bm_rowsize_2, dest_bm_rowsize_2; int i; sbits = src->bm_data + (src->bm_rowsize * sy) + sx; dbits = dest->bm_data + (dest->bm_rowsize * dy) + dx; // No interlacing, copy the whole buffer. if (gr_bitblt_fade_table==NULL) { for (i=0; i < h; i++ ) { gr_linear_rep_movsdm( sbits, dbits, w ); sbits += src->bm_rowsize; dbits += dest->bm_rowsize; } } else { for (i=0; i < h; i++ ) { gr_linear_rep_movsdm_faded( sbits, dbits, w, gr_bitblt_fade_table[dy+i] ); sbits += src->bm_rowsize; dbits += dest->bm_rowsize; } } } void gr_bm_bitblt(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest) { int dx1=dx, dx2=dx+dest->bm_w-1; int dy1=dy, dy2=dy+dest->bm_h-1; int sx1=sx, sx2=sx+src->bm_w-1; int sy1=sy, sy2=sy+src->bm_h-1; if ((dx1 >= dest->bm_w ) || (dx2 < 0)) return; if ((dy1 >= dest->bm_h ) || (dy2 < 0)) return; if ( dx1 < 0 ) { sx1 += -dx1; dx1 = 0; } if ( dy1 < 0 ) { sy1 += -dy1; dy1 = 0; } if ( dx2 >= dest->bm_w ) { dx2 = dest->bm_w-1; } if ( dy2 >= dest->bm_h ) { dy2 = dest->bm_h-1; } if ((sx1 >= src->bm_w ) || (sx2 < 0)) return; if ((sy1 >= src->bm_h ) || (sy2 < 0)) return; if ( sx1 < 0 ) { dx1 += -sx1; sx1 = 0; } if ( sy1 < 0 ) { dy1 += -sy1; sy1 = 0; } if ( sx2 >= src->bm_w ) { sx2 = src->bm_w-1; } if ( sy2 >= src->bm_h ) { sy2 = src->bm_h-1; } // Draw bitmap bm[x,y] into (dx1,dy1)-(dx2,dy2) if ( dx2-dx1+1 < w ) w = dx2-dx1+1; if ( dy2-dy1+1 < h ) h = dy2-dy1+1; if ( sx2-sx1+1 < w ) w = sx2-sx1+1; if ( sy2-sy1+1 < h ) h = sy2-sy1+1; gr_bm_ubitblt(w,h, dx1, dy1, sx1, sy1, src, dest ); } void gr_bm_ubitblt(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest) { register int x1, y1; if ( (src->bm_type == BM_LINEAR) && (dest->bm_type == BM_LINEAR )) { if ( src->bm_flags & BM_FLAG_RLE ) gr_bm_ubitblt00_rle( w, h, dx, dy, sx, sy, src, dest ); else gr_bm_ubitblt00( w, h, dx, dy, sx, sy, src, dest ); return; } #ifdef OGL if ( (src->bm_type == BM_LINEAR) && (dest->bm_type == BM_OGL )) { ogl_ubitblt(w, h, dx, dy, sx, sy, src, dest); return; } if ( (src->bm_type == BM_OGL) && (dest->bm_type == BM_LINEAR )) { return; } if ( (src->bm_type == BM_OGL) && (dest->bm_type == BM_OGL )) { return; } #endif if ( (src->bm_flags & BM_FLAG_RLE ) && (src->bm_type == BM_LINEAR) ) { gr_bm_ubitblt0x_rle(w, h, dx, dy, sx, sy, src, dest); return; } for (y1=0; y1 < h; y1++ ) { for (x1=0; x1 < w; x1++ ) { gr_bm_pixel( dest, dx+x1, dy+y1, gr_gpixel(src,sx+x1,sy+y1) ); } } } // Clipped bitmap ... void gr_bitmap( int x, int y, grs_bitmap *bm ) { int dx1=x, dx2=x+bm->bm_w-1; int dy1=y, dy2=y+bm->bm_h-1; #ifndef OGL int sx=0, sy=0; #endif if ((dx1 >= grd_curcanv->cv_bitmap.bm_w ) || (dx2 < 0)) return; if ((dy1 >= grd_curcanv->cv_bitmap.bm_h) || (dy2 < 0)) return; // Draw bitmap bm[x,y] into (dx1,dy1)-(dx2,dy2) #ifdef OGL ogl_ubitmapm_cs(x, y, 0, 0, bm, -1, F1_0); #else if ( dx1 < 0 ) { sx = -dx1; dx1 = 0; } if ( dy1 < 0 ) { sy = -dy1; dy1 = 0; } if ( dx2 >= grd_curcanv->cv_bitmap.bm_w ) { dx2 = grd_curcanv->cv_bitmap.bm_w-1; } if ( dy2 >= grd_curcanv->cv_bitmap.bm_h ) { dy2 = grd_curcanv->cv_bitmap.bm_h-1; } gr_bm_ubitblt(dx2-dx1+1,dy2-dy1+1, dx1, dy1, sx, sy, bm, &grd_curcanv->cv_bitmap ); #endif } void gr_bitmapm( int x, int y, grs_bitmap *bm ) { int dx1=x, dx2=x+bm->bm_w-1; int dy1=y, dy2=y+bm->bm_h-1; int sx=0, sy=0; if ((dx1 >= grd_curcanv->cv_bitmap.bm_w ) || (dx2 < 0)) return; if ((dy1 >= grd_curcanv->cv_bitmap.bm_h) || (dy2 < 0)) return; if ( dx1 < 0 ) { sx = -dx1; dx1 = 0; } if ( dy1 < 0 ) { sy = -dy1; dy1 = 0; } if ( dx2 >= grd_curcanv->cv_bitmap.bm_w ) { dx2 = grd_curcanv->cv_bitmap.bm_w-1; } if ( dy2 >= grd_curcanv->cv_bitmap.bm_h ) { dy2 = grd_curcanv->cv_bitmap.bm_h-1; } // Draw bitmap bm[x,y] into (dx1,dy1)-(dx2,dy2) if ( (bm->bm_type == BM_LINEAR) && (grd_curcanv->cv_bitmap.bm_type == BM_LINEAR )) { if ( bm->bm_flags & BM_FLAG_RLE ) gr_bm_ubitblt00m_rle(dx2-dx1+1,dy2-dy1+1, dx1, dy1, sx, sy, bm, &grd_curcanv->cv_bitmap ); else gr_bm_ubitblt00m(dx2-dx1+1,dy2-dy1+1, dx1, dy1, sx, sy, bm, &grd_curcanv->cv_bitmap ); return; } gr_bm_ubitbltm(dx2-dx1+1,dy2-dy1+1, dx1, dy1, sx, sy, bm, &grd_curcanv->cv_bitmap ); } void gr_bm_ubitbltm(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest) { register int x1, y1; ubyte c; #ifdef OGL if ( (src->bm_type == BM_LINEAR) && (dest->bm_type == BM_OGL )) { ogl_ubitblt(w, h, dx, dy, sx, sy, src, dest); return; } if ( (src->bm_type == BM_OGL) && (dest->bm_type == BM_LINEAR )) { return; } if ( (src->bm_type == BM_OGL) && (dest->bm_type == BM_OGL )) { return; } #endif for (y1=0; y1 < h; y1++ ) { for (x1=0; x1 < w; x1++ ) { if ((c=gr_gpixel(src,sx+x1,sy+y1))!=255) gr_bm_pixel( dest, dx+x1, dy+y1,c ); } } } static void gr_bm_ubitblt00_rle(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest) { unsigned char * dbits; unsigned char * sbits; int i, data_offset; data_offset = 1; if (src->bm_flags & BM_FLAG_RLE_BIG) data_offset = 2; sbits = &src->bm_data[4 + (src->bm_h*data_offset)]; for (i=0; ibm_data[4+(i*data_offset)])); dbits = dest->bm_data + (dest->bm_rowsize * dy) + dx; // No interlacing, copy the whole buffer. for (i=0; i < h; i++ ) { gr_rle_expand_scanline( dbits, sbits, sx, sx+w-1 ); if ( src->bm_flags & BM_FLAG_RLE_BIG ) sbits += (int)INTEL_SHORT(*((short *)&(src->bm_data[4+((i+sy)*data_offset)]))); else sbits += (int)(src->bm_data[4+i+sy]); dbits += dest->bm_rowsize << gr_bitblt_dest_step_shift; } } static void gr_bm_ubitblt00m_rle(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest) { unsigned char * dbits; unsigned char * sbits; int i, data_offset; data_offset = 1; if (src->bm_flags & BM_FLAG_RLE_BIG) data_offset = 2; sbits = &src->bm_data[4 + (src->bm_h*data_offset)]; for (i=0; ibm_data[4+(i*data_offset)])); dbits = dest->bm_data + (dest->bm_rowsize * dy) + dx; // No interlacing, copy the whole buffer. for (i=0; i < h; i++ ) { gr_rle_expand_scanline_masked( dbits, sbits, sx, sx+w-1 ); if ( src->bm_flags & BM_FLAG_RLE_BIG ) sbits += (int)INTEL_SHORT(*((short *)&(src->bm_data[4+((i+sy)*data_offset)]))); else sbits += (int)(src->bm_data[4+i+sy]); dbits += dest->bm_rowsize << gr_bitblt_dest_step_shift; } } // in rle.c static void gr_bm_ubitblt0x_rle(int w, int h, int dx, int dy, int sx, int sy, grs_bitmap * src, grs_bitmap * dest) { int i, data_offset; register int y1; unsigned char * sbits; data_offset = 1; if (src->bm_flags & BM_FLAG_RLE_BIG) data_offset = 2; sbits = &src->bm_data[4 + (src->bm_h*data_offset)]; for (i=0; ibm_data[4+(i*data_offset)])); for (y1=0; y1 < h; y1++ ) { gr_rle_expand_scanline_generic( dest, dx, dy+y1, sbits, sx, sx+w-1); if ( src->bm_flags & BM_FLAG_RLE_BIG ) sbits += (int)INTEL_SHORT(*((short *)&(src->bm_data[4+((y1+sy)*data_offset)]))); else sbits += (int)src->bm_data[4+y1+sy]; } } // rescalling bitmaps, 10/14/99 Jan Bobrowski jb@wizard.ae.krakow.pl static inline void scale_line(unsigned char *in, unsigned char *out, int ilen, int olen) { int a = olen/ilen, b = olen%ilen; int c = 0, i; unsigned char *end = out + olen; while(out= ilen) { c -= ilen; goto inside; } while(--i>=0) { inside: *out++ = *in; } in++; } } static void gr_bitmap_scale_to(grs_bitmap *src, grs_bitmap *dst) { unsigned char *s = src->bm_data; unsigned char *d = dst->bm_data; int h = src->bm_h; int a = dst->bm_h/h, b = dst->bm_h%h; int c = 0, i, y; for(y=0; y= h) { c -= h; goto inside; } while(--i>=0) { inside: scale_line(s, d, src->bm_w, dst->bm_w); d += dst->bm_rowsize; } s += src->bm_rowsize; } } void show_fullscr(grs_bitmap *bm) { grs_bitmap * const scr = &grd_curcanv->cv_bitmap; #ifdef OGL if(bm->bm_type == BM_LINEAR && scr->bm_type == BM_OGL && bm->bm_w <= grd_curscreen->sc_w && bm->bm_h <= grd_curscreen->sc_h) // only scale with OGL if bitmap is not bigger than screen size { ogl_ubitmapm_cs(0,0,-1,-1,bm,-1,F1_0);//use opengl to scale, faster and saves ram. -MPM return; } #endif if(scr->bm_type != BM_LINEAR) { grs_bitmap *tmp = gr_create_bitmap(scr->bm_w, scr->bm_h); gr_bitmap_scale_to(bm, tmp); gr_bitmap(0, 0, tmp); gr_free_bitmap(tmp); return; } gr_bitmap_scale_to(bm, scr); } // Find transparent area in bitmap void gr_bitblt_find_transparent_area(grs_bitmap *bm, int *minx, int *miny, int *maxx, int *maxy) { ubyte c; int i = 0, x = 0, y = 0, count = 0; static unsigned char buf[1024*1024]; if (!(bm->bm_flags&BM_FLAG_TRANSPARENT)) return; memset(buf,0,1024*1024); *minx = bm->bm_w - 1; *maxx = 0; *miny = bm->bm_h - 1; *maxy = 0; // decode the bitmap if (bm->bm_flags & BM_FLAG_RLE){ unsigned char * dbits; unsigned char * sbits; int i, data_offset; data_offset = 1; if (bm->bm_flags & BM_FLAG_RLE_BIG) data_offset = 2; sbits = &bm->bm_data[4 + (bm->bm_h * data_offset)]; dbits = buf; for (i=0; i < bm->bm_h; i++ ) { gr_rle_decode(sbits,dbits); if ( bm->bm_flags & BM_FLAG_RLE_BIG ) sbits += (int)INTEL_SHORT(*((short *)&(bm->bm_data[4+(i*data_offset)]))); else sbits += (int)bm->bm_data[4+i]; dbits += bm->bm_w; } } else { memcpy(&buf, bm->bm_data, sizeof(unsigned char)*(bm->bm_w*bm->bm_h)); } for (y = 0; y < bm->bm_h; y++) { for (x = 0; x < bm->bm_w; x++) { c = buf[i++]; if (c == TRANSPARENCY_COLOR) { // don't look for transparancy color here. count++; if (x < *minx) *minx = x; if (y < *miny) *miny = y; if (x > *maxx) *maxx = x; if (y > *maxy) *maxy = y; } } } Assert (count); }